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Preface

When in the spring of 1993 I was just about finished with my Master’s degree studies at
Leiden University, I found myself in need of a job. I looked for positions both inside and
outside of academia, even applied to a few, but none of them felt right. Some were very
theoretical in nature, and I feared taking them would cut me off from applied computer
science forever—this is not a field where you can afford to get out of touch with recent
developments. The ones that were of a practical nature, however, all precluded the pos-
sibility to do any research, and at the time I was very eager to write a dissertation.

Time was running out, unfortunately, as delaying my choice would invariably mean
getting conscripted for military service in the Royal Dutch Army, which at the time was
compulsory. That threat clearly presented the worst of both worlds: the assurance of
both falling behind in practical matters and not being able to do any fundamental re-
search. So, I reluctantly decided to accept one of the offers I had had quickly, even if that
meant, heaven forbid, rolling a dice to make up my mind.

Right that same week, I heard Jos Baeten was looking for an onderzoeker in opleiding
to do research on a project called Real-Time and Real-Space Process Algebra. Although
Jos’s name was known to me, I had not the slightest idea what this project might be about.
The project description spoke about orbiting satellites and real-time algorithms, so I sup-
posed it had something to do with real-time operating systems or the like. Cautiously,
because I had also expressed my interest in working for him, I went to see Joost Engel-
friet (whose advice I trust blindly) and asked him what process algebra was all about.
Joost explained to me it was a new field, very much en vogue, that combined aspects of
theoretical computer science with their practical application to real-life problems. “Fur-
thermore,” he said, “Jos Baeten is a great fund-raiser, and he attracts many good people
to work for him.” My mind was made up; I went to see Jos, and to my amazement within
a week I got offered a position.

One of the first things Jos asked me to do, was to take a look at an algorithm called
Fischer’s Protocol. I studied it, tried to analyze it using discrete-time process algebra and
real-time process algebra, and wrote a paper about it [191], parts of which appear as
Chapter 7 of this thesis.

Apparently Jos liked it, because immediately afterward he suggested a far more am-
bitious project: I was to apply process algebra to Hybrid Systems. This was a mistake.
Everything I wrote down seemed to run wild in all possible directions. Although I did
finish an extended abstract [192], the paper itself was a mess, stayed a mess, and even-
tually I just gave up on it. None of that work appears in this thesis. Nevertheless, I think
it is the most important paper I have (not) written, as it put me in shockingly clear per-
spective of my own limitations.

Next, I decided to do something completely different, preferably something less ad-
venturous. Jos at that moment had just finished a paper on discrete-time process algebra,
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viii Preface

and buried deep inside it, there was a theorem without a proof. He suggested Michel Re-
niers (then my roommate) and I see if we could supply that proof. It should take hardly
three weeks, he estimated, and pose no surprises. As it turned out, the theorem was in-
correct, and correcting all problems took over a year, resulting in a 100+ page proof. This
was published as [180], and parts of it appear as Chapters 4 and 5 of this thesis.

Having spent so much time on discrete-time process algebra (which was completely
out of the scope of the original project description!), I had grown to like it. Could I maybe
write another paper on it? That could be arranged; Jos had been thinking about the in-
corporation of the empty process in discrete-time process algebra, and although he had
very clear ideas on it, he had never found the time to write it all down. He explained to
me the basic concepts, and I set out to turn them into solid process algebra. That work
resulted in another paper [36], parts of which appear as Chapter 6 of this thesis.

Finally, it was Jan Bergstra who recognized that what I had been doing over the past
four years could be clearly divided in two parts. First, there were the things on discrete-
time process algebra, and they were quite nice. Secondly, there was the other stuff which
was, frankly, trash. When I first heard it put that way (and of course Jan did not put it so
bluntly, but used wonderful euphemisms instead), I was both shocked and outraged. I
tried to defend myself, could not, and consequently did not sleep for a week. Ultimately,
I admitted to myself that Jan was right.

My dissertation should be called Discrete-Time Process Algebra.

Jan Joris Vereijken,

Amsterdam, October 3, 1997.
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1
Introduction

1.1 Prologue

One of the things that separates humans from other animals is the fact that humans have
the ability to construct tools. Without tools, a human is a helpless, vulnerable, naked
nothing. Yet, with tools, humans can fly faster than eagles, dive deeper than whales, and
build larger communities than termites.

This tool-building ability does not restrict itself to purely physical tools. Next to the
wheel, fire, the car, and the computer, we also have conceptual tools, such as language,
law, and mathematics. It needs no further argumentation that the human tool-building
ability is the key to the evolutionary success of the human species. Tools are a natural
ingredient of everyday life. Nobody will try to cross the ocean swimming, or wage war
with bare hands.

Nevertheless, when it comes to one of the most difficult tasks imaginable, program-
ming computers, it is established practice to perform this task with the bare mind. Most
software developers approach computers in the way a Neanderthaler would approach a
car. The Neanderthaler might figure out how to use the steering wheel, but probably the
ignition would be beyond him. He would be pushing the car around with his bare hands,
and be quite proud of the achievement at that.

We are no better. Content with our current ability at programming, we happily pro-
duce software of extremely poor quality, marvel at the pretty pictures, and call it state-
of-the-art technology. Meanwhile, automated systems fail in all sorts of ways.

This state of affairs is intolerable. We need conceptual tools to aid the mind in pro-
ducing software of high quality.

1.2 Formal Methods

We live in a society that is increasingly dependent on information technology, where
minute software malfunctions can cause great loss of productivity, money, and even
lives. In the very readable account NEUMANN [152], we find a large collection of computer
related mishaps, and many of these are due to faulty software. We name a few:

1
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• When the first Space Shuttle was launched in 1981, faulty software caused one of
the clocks aboard the spacecraft to be off by a fraction of a second. This delayed
the launch by two days.

• During the Persian Gulf war, the Patriot anti-missile defense system’s clock was also
off by a fraction of a second, reducing the effectiveness of the system in intercept-
ing incoming Iraqi Scud missiles from 95% to 13%.

• In 1991, a Japanese automated railway-signaling system failed, and when operators
reverted to manual procedures, they caused a head-on collision between two trains,
costing the lives of 42 passengers.

• In 1992, a system collapse at the London ambulance-dispatch control center caused
ambulance service to be unavailable for 11 hours. Around 20 people died because
medical attention could not be provided to them in time.

This list could be extended almost indefinitely. We conclude that programming as
it is traditionally done, i.e., with the bare mind, leads to software systems that are not
reliable enough.

What can be done to remedy this situation? One of the problems (although by far not
the only one) is the fact that software systems often do not conform to their specifica-
tions, or do not even have clear specifications. In the Patriot example above, the clock
problems were due to the fact that the system had been in operation for several weeks,
while the clock could only provide accurate timing information for a few days at most.
Had this been clearly specified during the construction of the system, then the system
could have given a warning that it needed a clock adjustment. This is an unforgivable
mistake; when a programmer implements a clock, it should function as a clock. It should
provide the time within a specified margin of error, and that margin should be guaran-
teed. Simply implementing a clock, and hope for the best, will not do.

So, we must have a method that in some way guarantees that systems conform to their
specifications. To do this, we need two things. First, we must write down a specification
in a clear and unambiguous way, and secondly, we must provide a rigorous proof that
the system we have implemented indeed conforms to this specification (such a proof is
called a verification). Over the past two decades there has been a lot of research on such
methods, which due to their formality and rigor are sometimes called formal methods.

As noted by CLARKE AND WING [63], formal methods have a history of not fulfilling
promises. In the past, they were simply too inadequate, too obscure, or too expensive
to apply to large-scale software systems. However, they also argue that recently we have
seen the rise of more mature formal methods, methods that prove to be valuable tools
in developing reliable software systems.

In this thesis we will look at one class of modern formal methods: process algebra.

1.3 Process Algebra

Of all formal methods that have been developed over the past two decades, there is a
small class of methods, collectively called process algebra, that will have our special at-
tention. These methods have in common that they find their roots in algebra; they all
provide methods for calculating algebraically with processes.
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Recalling the tool metaphor from Section 1.1, we can describe process algebra as a
tool to help the mind reason about software:

• First, it can be used to specify exactly what a certain piece of software should do,
i.e., help us express what exactly we do expect from that piece of software.

• Secondly, it can be used to formally grasp the semantics of an implementation of
that piece of software, i.e., tell us what it actually does do.

• Thirdly, it can tell us about the relation between these two aspects: will our piece
of software behave the way we expect it to? If not, in what aspect? And why?

• Fourthly, in the process of specifying, implementing, and verifying a piece of soft-
ware, process algebra helps us to gain insight. Insight about the problem we are
trying to solve, but also insight about the way we might solve it. Due to the formal
and precise nature of process algebra, it leads our minds onto paths they would not
have taken so easily otherwise.

The fact that these four aspects can all be pursued using the same formalism is one of
the biggest strengths of process algebra: it provides a unifying language for the study of
many different stages of software development.

In this thesis, we will look at one specific type of process algebra: the Algebra of Com-
municating Systems (ACP) as introduced by BERGSTRA AND KLOP [45]. When in this the-
sis we speak of process algebra, we mean ACP-style process algebra, unless explicitly
indicated otherwise.

1.4 Time

Of the four software related mishaps we mentioned in Section 1.2, two had to do with
time. This is no coincidence: many modern software systems are not only expected to
produce correct results, they are also expected to do so in time.

Let us give some examples. Suppose you have a mobile telephone, and are making
a call while driving in your car. Then, sooner or later, you will get out of reach of the
base station your mobile phone is in contact with. When this happens, a certain piece
of software in the telephone network will quickly calculate which other base station is
closest to you at the moment, and switch your call over to there. All you notice is a short
beep, and you can continue your call. It is obvious that this procedure should be com-
pleted quickly: if the telephone network takes minutes to find you a new base station,
you might already be completely out of reach, and your call would have been terminated.

Then again, making a call from your car may not be a good idea anyway. Suppose
you are distracted by the conversation, and bump into another car. At that moment, a
piece of software within your airbag safety device will quickly decide whether this is a
minor accident, which does not warrant airbag activation, or a big one, which requires
the airbag to be inflated within the next few milliseconds. Again, this decision should
be made quickly, as with a full-blown crash in progress, every millisecond can mean the
difference between life and death.

These examples show that the timing aspects of software can often be an integral part
of the overall correctness. Therefore, any method for analyzing such software should be
able to take time into account.
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Process algebra, initially, was not very well equipped to handle timing aspects. Over
the years, however, many extensions to process algebra have been proposed that extend
standard process algebra with mechanisms for reasoning about time.

One of these extensions, called discrete-time process algebra, will be the object of
study of this thesis.

1.5 Organization of Chapters

Finally, we give an overview of the chapters of this thesis, and how they are organized:

• In Chapter 2 we give an introduction into process algebra, treating all the subjects
that are relevant for this thesis.

• In Chapter 3 we extend the (untimed) process algebra of Chapter 2 to discrete-time
process algebra, a variant of process algebra that allows us to specify and analyze
timing aspects of protocols in an explicit way.

• In Chapter 4 we give a number of theoretical results about the process algebras we
have treated in Chapter 3. Most importantly, we prove soundness and completeness
results.

• In Chapter 5 we extend some process algebras treated in Chapter 4 with concur-
rency constructs; constructs that allow us to talk about processes that consist of
multiple components that are simultaneously active.

• In Chapter 6 we examine the combination of discrete-time process algebra and the
empty process. We discuss the difficulties we have encountered with this combina-
tion, motivate our solutions, and state a number of theoretical results.

• In Chapter 7 we apply discrete-time process algebra to the verification of a protocol,
namely Fischer’s Protocol for mutual exclusion, a protocol whose correctness heavily
depends on timing aspects.

• In Chapter 8 we discuss work on related topics that has been published by others.

• In Chapter 9, finally, we give an overview of the results from this thesis, indicate
the strong and the weak points of the methods we have used and developed, and
discuss future research.

Because some of the chapters get very technical, we have provided some appendices and
indices for reference purposes. Together with the summary, acknowledgments, curricu-
lum vitae, list of tables, and bibliography they form the final part of this thesis.



2
Untimed Process Algebra

2.1 Introduction

In this chapter we give an overview of some basic aspects of process algebra, as intro-
duced by BERGSTRA AND KLOP [45] in 1984. Since then, many of developments have taken
place; for a comprehensive overview of more recent developments, see the textbook by
BAETEN AND WEIJLAND [38], published in 1990, or the handbook article by BAETEN AND

VERHOEF [37], published in 1995. We will limit ourselves to describing those aspects of
process algebra that are relevant for the present thesis.

The purpose of this overview is twofold. First, we want to give the reader a solid in-
tuitive understanding of all relevant concepts involved, in their pure (i.e. untimed) form.
So, we give an intuitive motivation for every definition, theorem, etc., and give examples
where needed. When in later chapters some issue seems unclear or confusing, it may be
useful to look at the same problem in the smaller, untimed setting of this chapter, and
read the relevant motivations once more. Note that the motivations are always preceded
by a “helping hand” symbol, ☞, to visually separate the formal from the informal text.

Secondly, we want to lay a basis upon which to extend untimed process algebra with
discrete time. The definitions we give are therefore carefully chosen to avoid running into
insignificant, but very irritating, technical problems later on when we add discrete-time
extensions. Consequently, readers familiar with process algebra will find our definitions
slightly different from those given in, e.g., BAETEN AND WEIJLAND [38]. In this way, we can
make a clean separation between issues involving process algebra per se (not necessarily
a subject of this thesis), and issues involving discrete-time process algebra specifically
(very much a subject of this thesis).

In view of these goals, we have chosen to omit all proofs from this section; they are
neither relevant nor interesting for our purpose here. In Chapters 4, 5, and 6 we will give
plenty of proofs; and since most of these proofs concern process algebras that are clean
extensions of the untimed ones treated in this chapter, they do also apply to the untimed
case.

On first reading one should probably not bother too much with the subtle intricacies
of our definitions, but rather concentrate on the examples and the motivations given. In
later chapters, when this chapter comes to serve as a reference, the fine details of the

5



6 2 • Untimed Process Algebra

definitions will be much better appreciated. Note that some remarks in this chapter are
numbered; those remarks are of a rather formal nature, falling somewhere in between
the definitions and the motivations.

2.2 Elementary Principles

Process algebra is a means of specifying, verifying, and in general, talking about com-
puter algorithms and protocols (formally called processes) in a clearly defined, formal
manner. Compared with other formalisms developed for this purpose, process algebra’s
strong point is the fact that it is based on algebra. In this way, calculations with processes
become algebraic calculations, allowing room for high-level abstractions to be made, po-
tentially avoiding the complexity blow-up that is always just around the corner in this
area of computer science.

The whole of methods and formalisms collectively known as process algebra can be
subdivided into separate parts of which every single one, again, is called a process al-
gebra. Confusion between these two uses is not necessary; usually the presence of an
article (“the” or “a”) indicates we are not talking about the whole.

At the heart of every process algebra lies a set of axioms. Every axiom consists of an
equality between two process terms (that may contain free variables). Behind every axiom
there is an intuitive motivation: an insight that explains why these two process terms
should be considered equal. Together these axioms lead to an algebra: a mathematical
structure that allows for the manipulation of terms.

Given the set of axioms of a certain process algebra, it is possible to construct a model:
a mathematical “world” that obeys the equalities given by the axioms. Such a model is
called a semantics for that algebra. Typically, several clearly distinct models can be given
for any given process algebra. However, there is a tendency always to use the same kind
of model, called a bisimulation model.

Operationally, a process is an entity that executes a number of actions, where the ques-
tion whether or not a certain action can execute at a given moment depends very subtly
on both visible and invisible aspects of the execution sequence so far. Such actions are
the most elementary part of the execution. They take no time, and cannot be further
subdivided; they are atomic.

In the following section, we will give concrete examples of the concepts mentioned
above, and explain the intuitions that are behind them.

2.3 Basic Process Algebras

We start by treating the most simple process algebras of them all, historically called the
class of Basic Process Algebras (BPA’s). These process algebras form the core around
which all other process algebras are built. They contain just two operators: one that
expresses choice, and another one expressing sequential execution.
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2.3.1 BPA

In this section, we introduce the process algebra BPA. Before we can do this, we need
some introductory definitions.

First we need an alphabet whose symbols will stand for the actions that our processes
can execute.

Definition 2.3.1.1 (Alphabet)
For this section, and all sections to come, we presume the existence of a fixed, finite al-
phabet A, that can be considered a parameter of the respective process algebras. Fur-
thermore, we defineAδ as A∪{δ}, Aδε as A∪{δ, ε}, Aτ as A∪{τ}, Aδτ as A∪{δ,τ}, and
Aσ as A∪{σ}, where δ, ε, τ, and σ are (yet to be treated) symbols that are not contained
in A.

Example 2.3.1.2 (Alphabet)
Suppose we want to use process algebra to study a cola machine; the kind where you
insert money, push a button, and get a can of cola served. If we abstract our description
to a level where those three actions suffice to describe everything, we might choose our
alphabet as follows:

A = {insert-money,push-button,serve-cola}

or, if we would want to be less verbose:

A = {i, p, s}

☞ In practice, we will mostly choose lowercase letters from the beginning of the Roman
alphabet as our symbols: a, b, c, etc.

We will use cola machines as our running example throughout this section. But before
we can start building one, we first need some operators.

The first operator we introduce is the choice operator , also called the alternative com-
position operator . This operator expresses the choice between two processes; given pro-
cesses x and y, the process that executes either x or y is denoted as x + y. The second
operator is the sequential composition operator. This operator executes two processes se-
quentially; given again x and y, the process that first executes x, and after x has finished,
continues with y is denoted as x·y.

Now we are ready to start defining BPA. First, we define the signature of BPA, that is,
the constants and operators from which the process terms of BPA are built.

Definition 2.3.1.3 (Signature of BPA)
The signature of BPA consists of the actions {a|a ∈ A}, the alternative composition oper-
ator +, and the sequential composition operator ·.

Remark 2.3.1.4 (Symbol versus Action)
Note that in Definition 2.3.1.3, in the expression {a|a ∈ A}, the second a refers to the
symbol a, while the first one refers to the action a. This distinction should be clearly
made, and it can be considered a tragic historical incident that these different notions
have received the same notation.
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Definition 2.3.1.5 (Closed Terms, Open Terms, Process Terms)
Expressions over the signature of a given process algebra are called closed terms. When
we allow free variables to appear in such an expression, the result is called an open term.
Open terms are sometimes also called process terms.

The set of all closed terms of a given process algebra P is denoted by C(P).

☞ Using these definitions, we now introduce the set of axioms associated with BPA. Ev-
ery axiom consists of an equality between two process terms. There are five of them,
named A1 trough A5. Three of them are concerned with the + operator, one with the ·
operator, and one with the interaction between the two.

Definition 2.3.1.6 (Axioms of BPA)
The process algebra BPA is axiomatized by Axioms A1–A5 shown in Table 2.1: BPA =
A1–A5.

x+ y = y + x A1

(x+ y)+ z = x+ (y + z) A2

x+ x = x A3

(x+ y)·z = x·z+ y·z A4

(x·y)·z = x·(y·z) A5

Table 2.1: Axioms of BPA.

☞ The axioms of BPA capture the very essence of process algebra; they, and only they,
are included in every process algebra we will describe. None of these axioms is very sur-
prising; we discuss them shortly.

Axiom A1 expresses the commutativity of the alternative composition: making a
choice between x and y is the same as making a choice between y and x. Axiom A2 ex-
presses the associativity of the alternative composition: when choosing among three al-
ternatives, the grouping of the alternatives is irrelevant. Finally, Axiom A3 expresses the
idempotency of the alternative composition: choosing between x and x is the same as
doing x right away. Then we have Axiom A4, which expresses the right-distributivity of
the sequential composition over the alternative composition: choosing between x and y,
and after that doing z is the same as choosing between x followed by z and y followed by
z. Last, Axiom A5 expresses the associativity of the sequential composition: when doing
x, followed by y, followed by z, the grouping of the three processes is irrelevant.

The most surprising axiom of BPA is probably the one that is not present : namely the
left-distributivity of the ·over the +. This axiom, Axiom LD, is shown in Table 2.2 on the
facing page. An argument against this axiom could be that it unifies too many processes:
it may very well be the case that the execution of x yields information that influences the
following choice between y and z. Hence, it would be incorrect to let x·(y+ z) be equal
to x·y+ x·z. This, however, is a matter of taste, and making the unification or not leads
to entirely different theories. If we would include Axiom LD, we would get a so-called
trace semantics, also called linear-time semantics. Choosing not to include it, as we do,
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leads to a so-called bisimulation semantics, also called branching-time semantics. For a
full discussion of these two opposites, and the whole spectrum in between them, see the
dissertation of VAN GLABBEEK [83].

x·(y+ z) = x·y + x·z LD

Table 2.2: Left-distributivity.

Definition 2.3.1.7 (Operator Precedence)
Throughout this thesis we adhere to the following operator precedence scheme, which
consists of four categories of operators. The four categories, from strongly binding to
weakly binding, are:

(i). all unary operators,

(ii). the sequential composition operator ·,
(iii). all binary operators, except + and ·,
(iv). the alternative composition operator +.

Within one category, all operators bind equally strong.

☞ This precedence scheme allows us to get rid of as many parentheses as possible; for
example, we need not write anymore (a·b) + c, as we can use a·b + c instead. Given
the associativity of the + and the·(as expressed by Axioms A2 and A5), we also need not
write (a+b)+c and (a·b)·c; we can use a+b+c and a·b·c instead. Finally, note that the
operators in categories (i) and (iii) also include all operators that have yet to be defined
(there will be no operators of arity three or higher).

Definition 2.3.1.8 (Derivability Relation)
Process terms x and y in a certain process algebra P that can be rewritten into each other,
using equational logic, are called derivably equal, denoted by the derivability relation
symbol ` and the algebraic equality symbol =:

P ` x = y

☞ For example, in BPA we can rewrite c+b+b+a into a+b+ c by repeatedly applying
Axioms A1–A3. Formally we denote this by BPA ` c+ b+ b+ a = a+ b+ c.
Example 2.3.1.9 (Cola Machine in BPA)
Suppose we have actions i, p, and s standing for “insert coin”, “push button”, and “serve
cola”. We could then model our cola machine as:

cola-machine1 = i·p·s
where the equality symbol can be interpreted as “we define the process cola-machine1 as
follows . . . ” (alternatively, the equation can be viewed as an axiom for the new constant
cola-machine1).
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Let us refine the “insert coin” action. Suppose cola costs 15 Euro cents (wishful think-
ing, but so is the Euro), and we may insert 5 and 10 Euro-cent coins, denoted by i5 and
i10 respectively. Then we could write:

cola-machine2 = (i10·i5 + i5·i10 + i5·i5·i5)·p·s
Alas, this is slightly different from what we want; if we now insert a 5 cent coin, we may
either end up in the second or third summand (the choice is made non-deterministically,
and cannot be observed from the outside). Were we to end up in the third, while we only
have a 10 cent coin left, we lose: we cannot continue, as cola-machine2 expects us to
insert a 5 cent coin.

We will repair this by using a more carefully chosen branching structure:

cola-machine3 = (i10·i5 + i5·(i10 + i5·i5))·p·s
This is better: cola-machine3 accepts 15 cents in any combination of 5 and 10 cent coins.

Definition 2.3.1.10 (Notation regarding Semantics, Part I)
In order to define a semantics, we will use term-deduction system semantics, also called
“Structured Operational Semantics” or “Plotkin-style semantics”. (See PLOTKIN [166],
where “Structured Operational Semantics” is called “Structural Operational Semantics”.
For arguments why “structured” is more appropriate than “structural” here, see Section
1.2.1 of GROOTE [88].) We use the notation x a→ x′ to denote that x can do an a-step (also
called a-transition or action step) to x′, and x a→√ to denote that x can do an a-step and
then terminate. Apart from the obvious negations of these, we also use x a

3 to indicate
that x cannot do an a-step, and x3 to indicate that x cannot do any step whatsoever.
Finally, we write x a1,...,an−−−−→ x′ as a shorthand for x a1→ x′, . . . , x an→ x′.

For each process algebra P we define, we will give a term-deduction system, denoted
by T(P). By using the concept of bisimulation (to be defined in Definition 2.3.1.13 on the
next page), we then turn the term-deduction system into a model of the given axioms.

Definition 2.3.1.11 (Semantics of BPA)
The semantics of BPA are given by the term-deduction system T(BPA) induced by the
deduction rules shown in Table 2.3 and Table 2.4 on the next page. In these deduction
rules, a is a variable that ranges over the alphabet A.

a a→√

Table 2.3: Deduction rule for untimed actions.

☞ These deduction rules capture the operational behavior of BPA. For example, the one
in Table 2.3 expresses that the process a can do an a-step, and then terminate, and the
first one of Table 2.4 on the facing page expresses the fact that when x can execute an a,
then also can the alternative composition of x and y. Note that it does not say that x+y
must execute an a, only that it may.
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x a→ x′
x+ y a→ x′

x a→√

x+ y a→√
x a→ x′

x·y a→ x′·y

y a→ y′
x+ y a→ y′

y a→√

x+ y a→√
x a→√

x·y a→ y

Table 2.4: Deduction rules for alternative and sequential composition.

We use the predicate
a→√ to denote that a process may execute an a, and then ter-

minate. So, the last deduction rule expresses the fact that when x may do an a and then
terminate, then x followed by y may execute and a, and then further continue as y. Note
that

√
is not a process, but just part of the notation of the predicate

a→√.

Definition 2.3.1.12 (Modeling Relation)
If for a term-deduction systemT(P)we want to express that a certain (transition) relation
or predicate ϕ is modeled by T(P), we denote this using the modeling relation î:

T(P) îϕ

When there can be no confusion as to which term-deduction system is intended, we just
write ϕ, as we have done above.

☞ For example, using the deduction rules shown in Table 2.4, we could write T(BPA) î
(a+ b)·c a→ c.

Definition 2.3.1.13 (Bisimulation for BPA)
Bisimulation for BPA is defined as follows; a binary relation R on closed terms is a bisim-
ulation iff the following transfer conditions hold for all closed terms p and q:

(i). If RS(p,q) and T(BPA) î p a→ p′, where a ∈ A, then there exists a process term q′
such that T(BPA) î q a→ q′ and RS(p′, q′),

(ii). if RS(p,q) and T(BPA) î p a→√, where a ∈ A, then T(BPA) î q a→√.

Two closed BPA terms p and q are bisimilar, notation p ∼BPA q, if there exists a bisimu-
lation relation R such that R(p,q). Where there can be no confusion, we abbreviate this
by p ∼ q.

☞ Note that by this definition the empty relation is also a valid bisimulation relation,
although it does not lead to bisimilarity of any two BPA terms.

Remark 2.3.1.14 (Bisimulation)
The concept of bisimulation was first introduced by PARK [160].
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Example 2.3.1.15 (Bisimulation)
If we take the two BPA processes p and q defined by p ≡ a·c+ b·c and q ≡ (a+ b)·c,
then we have p ∼BPA q as we can construct the following bisimulation:

R = {(a·c+ b·c, (a+ b)·c), (c, c)}

Considering that the only transitions of p and q are:

p ≡ a·c+ b·c a,b−−→ c c→√

q ≡ (a+ b)·c a,b−−→ c c→√

it is easy to check that R is indeed a bisimulation that relates p and q.
On the other hand, if we take p ≡ a·b+a·c and q ≡ a·(b+c), then it is not possible to

find a bisimulation R that relates p and q. This can be easily understood: first note that
the only transition of q is the following: q ≡ a·(b+c) a→ b+c. As p ≡ a·b+a·c a→ b, we must
necessarily have that RS(b, (b+ c)). However, this is not possible, as b+ c c→√, whereas
b c
3
√

, which is a violation of the second transfer condition of Definition 2.3.1.13. So, we
have a contradiction, and no bisimulation exists between p and q.

☞ Bisimulation captures, for closed terms, precisely the equalities induced by the ax-
ioms and equational logic. If we look at the example above, we first see two terms that
are equal by Axiom A4 and that are also bisimilar. Then, there are two terms that are not
equal on the basis of our axioms, and indeed, they are not bisimilar.

We will formalize and prove this claim in Chapter 4, which is completely dedicated to
this and related issues.

Definition 2.3.1.16 (Bisimulation Model for BPA)
Using bisimulation, we can now construct a model of the axioms of BPA. In order to
do this, we first need to know that bisimulation is a congruence (see Property 2.6.1.1 on
page 35) with respect to all operators. VERHOEF [194] proves that a sufficient condition
for this is that:

(i). The deduction rules are in the the so-called panth format,

(ii). the deduction rules are well-founded,

(iii). a stratification can be given for the deduction rules.

It is easy to check that these three conditions are indeed satisfied. We will not give defini-
tions of the concepts mentioned in these conditions, as that would go beyond the scope
of this thesis.

We now construct the bisimulation model for BPA by taking the equivalence classes of
the set of all closed BPA terms, with respect to bisimulation equivalence. As bisimulation
is a congruence, the operators can be trivially defined on the equivalence classes. For
example for the + operator:

[x]∼ + [y]∼ = [x+ y]∼
Here [x]∼ denotes the equivalence class of x with respect to the bisimulation equivalence
relation ∼. The other operators are defined in the same way.
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☞ The bisimulation model shown above, is by no means the only model of BPA. A very
simple one is for example the one-point model, where every process term is associated
with the one point of the model. But there are many more, such as the projective-limit
model, or the term model. We will only concern ourselves with bisimulation models of
the kind defined above. For an overview of other models, see BAETEN AND WEIJLAND [38]
or the dissertation of BLANCO [48].

Definition 2.3.1.17 (Basic Terms of BPA)
We define deadlock-free basic terms inductively as follows:

(i). For every a ∈ A, a is a deadlock-free basic term,

(ii). if a ∈ A and t is a deadlock-free basic term, then a·t is a deadlock-free basic term,

(iii). if s and t are deadlock-free basic terms, then s+ t is a deadlock-free basic term.

From now on, when we speak of basic terms in the context of BPA, we mean deadlock-free
basic terms.

Example 2.3.1.18 (Basic Terms of BPA)
These are all basic terms of BPA:

a, a·b, a+ b, a·(b+ c), a·(b·c), a+ (b+ c), (a+ b)+ c

These, however, are not:

(a+ b)·c, (a·b)·c

☞ Later on we will show that for every closed term, there exists a basic term such that
both are derivably equal by the axioms. Therefore, basic terms are very useful with regard
to proving general properties: often it is enough to use induction on the structure of basic
terms to prove a certain property for all closed terms.

Still, our definition is by no means the only definition that has this nice property.
Hence, the term basic is quite misleading. There is nothing basic about them; we could
just as well have named them “yet another normal form”. In fact, in Chapter 6 we will
encounter a situation where we need two very distinct kinds of “basic” terms within one
process algebra! Despite this, we will conform to the usage of the phrase “basic term” as
in the literature, because we do not want to create more confusion than we are trying to
remedy.

2.3.2 BPAδ

In this section, we extend the process algebra BPA with the so-called deadlock process.
We introduce a new constant, denoted δ, that will stand for the process which can do
nothing; neither execute an action, nor terminate successfully. The extended process
algebra that results is called BPAδ.

Definition 2.3.2.1 (Signature of BPAδ)
The signature of BPAδ consists of the actions {a|a ∈ A}, the deadlock constant δ, the al-
ternative composition operator +, and the sequential composition operator ·.
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Definition 2.3.2.2 (Axioms of BPAδ)
The process algebra BPAδ is axiomatized by the axioms of BPA given in Definition 2.3.1.6
on page 8 and Axioms A6–A7 shown in Table 2.5: BPAδ = A1–A7.

x+ δ = x A6

δ·x = δ A7

Table 2.5: Additional axioms for BPAδ.

☞ As shown above, BPAδ is very much like BPA. We have one new constant, δ, and two
new axioms.

The new constant δ denotes the process that cannot do anything, is irreparably
“stuck”, or, as it is sometimes said, denotes unsuccessful termination.

The first new axiom, Axiom A6, expresses that δ is a proper zero element with respect
to the alternative composition: when making a choice between doing x or getting stuck,
we never choose the latter. The second, Axiom A7, expresses that δ is a left-zero element
with respect to the sequential composition: being stuck followed by doing x afterwards,
is the same as just being stuck. Note that a is not equal to a·δ: the former can do an a,
and terminate successfully, while the latter will end in deadlock after it has done an a.

From these axioms, it becomes clear that the alternative composition in process alge-
bra is neither completely deterministic, nor completely non-deterministic. When a pro-
cess contains a deadlock summand, the alternative composition tries to avoid it when-
ever possible, thus behaving in a deterministic way. However, when we look at a process
such as a·b+a·c, then the choice between the first and the second summand is completely
open, and the alternative composition behaves non-deterministically.

Remark 2.3.2.3 (Axiom A6 versus Axiom A6A)
Notice that in the presence of the other axioms of BPAδ, Axiom A6 shown in Table 2.5
is equivalent, for closed BPAδ terms, with Axiom A6A shown in Table 2.6. Therefore, we
could replace A6 in BPAδ by A6A without affecting the soundness or completeness (to
be treated, see Section 2.6) of the resulting theory.

One such reason to do so, could be the fact that A6A remains valid in all discrete-time
process algebras we will describe, whereas A6 does not. Still, for historical reasons, we
prefer A6 to be used in the definition of BPAδ.

a+ δ = a A6A

Table 2.6: Alternative for axiom for deadlock.
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Example 2.3.2.4 (Cola Machine in BPAδ)
Let us use our new deadlock process to refine cola-machine3 of Example 2.3.1.9 a little
further. Suppose we have a cola machine that is willing to accept too much money, but
reacts to this not by giving cola, but by locking up:

cola-machine4 = (i10·(i5 + i10·δ)+ i5·(i10 + i5·(i5 + i10·δ)))·p·s

This is just like cola-machine3, except that it goes into a deadlock state when it gets a
chance to swallow 20 cents.

Definition 2.3.2.5 (Range of a)
When we write a (or b, or c, etc.) in the context of an equality or an ordering, we mean
this a to range over Aδ (provided, of course, deadlock is part of the relevant signature).
When we write it in the context of a deduction rule, we mean it to range over A. In all
other cases, or when we deviate from the above rule, we explicitly state whether it ranges
over A or Aδ.

Definition 2.3.2.6 (Semantics of BPAδ)
The semantics of BPAδ are given by the term-deduction system T(BPAδ) induced by the
deduction rules shown in Table 2.3 on page 10 and Table 2.4 on page 11.

☞ Note that the term-deduction system T(BPAδ) is almost identical to the term deduc-
tion system T(BPA) given in Definition 2.3.1.11 on page 10, as there are no deduction
rules for δ. However, T(BPAδ) does differ from T(BPA) in the fact that it contains the
symbol δ in its signature.

Definition 2.3.2.7 (Bisimulation and Bisimulation Model for BPAδ)
Bisimulation for BPAδ and the corresponding bisimulation model for BPAδ are defined in
the same way as for BPA. Replace “BPA” by “BPAδ” in Definition 2.3.1.13 on page 11 and
Definition 2.3.1.16 on page 12.

Definition 2.3.2.8 (Basic Terms of BPAδ)
We define standard basic terms inductively as follows:

(i). For every a ∈ Aδ, a is a standard basic term,

(ii). if a ∈ Aδ and t is a standard basic term, then a·t is a standard basic term,

(iii). if s and t are standard basic terms, then s+ t is a standard basic term.

From now on, when we speak of basic terms in the context of BPAδ, we mean standard
basic terms.

☞ The basic terms of BPAδ are almost the same as those of BPA, the only difference
being that a is now allowed to range over Aδ instead of just A. So, all the basic terms of
BPA from Example 2.3.1.18 on page 13 are basic terms of BPAδ too, also when we replace
the a, b, or c by a δ. Note that this is different from, e.g., BAETEN AND WEIJLAND [38],
where δ·t is never a basic term. We find that our definition is cleaner, and leads to more
straightforward proofs later on. Our definition is also broader, but as said before, the
goal of basic terms is to facilitate proofs, not to define as “basic” a class of terms possible.
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2.3.3 BPAε

In this section, we extend the process algebra BPA with the so-called empty process. We
introduce a new constant, denoted ε, that will stand for the process which does nothing
and terminates successfully. The extended process algebra that results is called BPAε.

Definition 2.3.3.1 (Signature of BPAε)
The signature of BPAε consists of the actions {a|a ∈ A}, the empty process constant ε,
the alternative composition operator +, and the sequential composition operator ·.
Definition 2.3.3.2 (Axioms of BPAε)
The process algebra BPAε is axiomatized by the axioms of BPA given in Definition 2.3.1.6
on page 8 and Axioms A8–A9 shown in Table 2.7: BPAε = A1–A5 + A8–A9.

x·ε = x A8

ε·x = x A9

Table 2.7: Additional axioms for BPAε.

☞ Axioms A8 and A9 are as straightforward as can be; they express that ε is a proper
unit element of the sequential composition.

Definition 2.3.3.3 (Notation regarding Semantics, Part II)
We extend our notation for defining term-deduction systems with a new predicate: let x↓
express that x has the option to terminate successfully, and x↓ô that x does not have the
option to terminate successfully.

Definition 2.3.3.4 (Semantics of BPAε)
The semantics of BPAε are given by the term-deduction system T(BPAε) induced by the
deduction rules shown in Table 2.8 and Table 2.9 on the next page.

a a→ ε ε↓

Table 2.8: Deduction rules for untimed actions with empty process.

☞ The deduction rules for BPAε are somewhat different from the ones we encountered
earlier. The x a→√ predicate that was used to express that x could do an a-step and then
terminate is gone, and we now use x↓ to express that x has an option to terminate. Con-
sequently, we do not anymore say anything about the termination behavior of a single
action directly, but instead define that a can do an a-step to the empty process, and then
define the termination behavior of the empty process. In this way, we still have that a
can do an a-step and then terminate, but now defined in a more indirect way.
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x a→ x′
x+ y a→ x′

y a→ y′
x+ y a→ y′

x a→ x′
x·y a→ x′·y

x↓, y a→ y′
x·y a→ y′

x↓
(x+ y)↓

y↓
(x+ y)↓

x↓, y↓
(x·y)↓

Table 2.9: Deduction rules for alternative and sequential composition
with empty process.

Apart from that, the new deduction rules are hardly surprising. The fourth one from
Table 2.9, for example, expresses that if x has the option to terminate and y can do an
a, then x followed by y can also do an a.

Definition 2.3.3.5 (Bisimulation for BPAε)
Bisimulation for BPAε is defined as follows; a binary relationR on closed terms is a bisim-
ulation iff the following transfer conditions hold for all closed terms p and q:

(i). If RS(p,q) and T(BPAε) î p a→ p′, where a ∈ A, then there exists a process term q′
such that T(BPAε) î q a→ q′ and RS(p′, q′),

(ii). if RS(p,q) and T(BPAε) î p↓, then T(BPAε) î q↓.

☞ The introduction of the x↓ predicate necessitates a correspondingly changed defini-
tion of bisimulation: we now require that the value of this predicate is the same for terms
that are related.

Definition 2.3.3.6 (Bisimulation Model for BPAε)
The bisimulation model for BPAε is defined in the same way as for BPA. Replace “BPA”
by “BPAε” in Definition 2.3.1.16 on page 12.

Definition 2.3.3.7 (Basic Terms of BPAε)
We define ε-basic terms inductively as follows:

(i). The constant ε is an ε-basic term,

(ii). if a ∈ A and t is an ε-basic term, then a·t is an ε-basic term,

(iii). if s and t are ε basic terms, then s+ t is an ε-basic term.

From now on, when we speak of basic terms in the context of BPAε, we mean ε-basic
terms.

Example 2.3.3.8 (Basic Terms of BPAε)
These are all basic terms of BPAε:

a·ε, a·b·ε, a·ε+ b·ε, a·(b·ε+ c·ε)
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These, however, are not:

a, a·b, a+ b

☞ The basic terms of BPAε are built “starting from ε”. Therefore, every basic term of
BPAε contains an ε, and none of the basic terms of BPA is a basic term of BPAε. We could
have included all the basic terms of BPA in the definition of basic terms of BPAε, but in
this case defining basic terms narrowly makes our life easier: in induction proofs we now
only have one base case (namely: ε) to deal with.

2.3.4 BPAδε

In this section, we combine the deadlock process and empty process of Sections 2.3.2
and 2.3.3. The extended process algebra that results is called BPAδε.

Definition 2.3.4.1 (Signature of BPAδε)
The signature of BPAδε consists of the actions {a|a ∈ A}, the deadlock constant δ, the
empty process constant ε, the alternative composition operator +, and the sequential com-
position operator ·.
Definition 2.3.4.2 (Axioms of BPAδε)
The process algebra BPAδε is axiomatized by the axioms of BPAδ that are given in Def-
inition 2.3.2.2 on page 14 and Axioms A8–A9 shown in Table 2.7 on page 16: BPAδε =
A1–A9.

Example 2.3.4.3 (Cola Machine in BPAδε)
We use the empty process to further refine cola-machine4 of Example 2.3.2.4. Suppose
our cola machine breaks down further, and now chances are it even will not give cola
when it formerly did. We could model this as follows:

cola-machine5 = (i10·(i5 + i10·δ)+ i5·(i10 + i5·(i5 + i10·δ)))·p·(s+ ε)

This is just like cola-machine4, except that after having paid 15 cents, we run the risk of
nothing happening. Note that cola-machine5 cannot be expressed in BPAδ; the introduc-
tion of the empty process enlarges the class of processes we can define.

☞ The choice between serving cola and doing nothing that is expressed by s + ε in
cola-machine5 says nothing about the probabilities of either alternative being chosen. In
general, process algebra does not concern itself with quantitative analysis of these prob-
abilities, it merely states which choices are possible. However, see BAETEN, BERGSTRA,
AND SMOLKA [30] for an extension to process algebra that differs in this respect.

Definition 2.3.4.4 (Semantics of BPAδε)
The semantics of BPAδε are given by the term-deduction systemT(BPAδε) induced by the
deduction rules shown in Table 2.8 on page 16 and Table 2.9 on the page before.

Definition 2.3.4.5 (Bisimulation and Bisimulation Model for BPAδε)
Bisimulation for BPAδε and the corresponding bisimulation model for BPAδε are defined
in the same way as for BPAε. Replace “BPAε” by “BPAδε” in Definition 2.3.3.5 on the pre-
ceding page and Definition 2.3.3.6 on the page before.
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Definition 2.3.4.6 (Basic Terms of BPAδε)
We define (δ, ε)-basic terms inductively as follows:

(i). The constant ε is a (δ, ε)-basic term,

(ii). if a ∈ Aδ and t is a (δ, ε)-basic term, then a·t is a (δ, ε)-basic term,

(iii). if s and t are (δ, ε) basic terms, then s+ t is a (δ, ε)-basic term.

From now on, when we speak of basic terms in the context of BPAδε, we mean (δ, ε)-basic
terms.

2.3.5 BPAδ̇

In this section, we extend the process algebra BPA with the so-called immediate dead-
lock process. We introduce a new constant, denoted δ̇, that acts very much like the δ we
encountered in Section 2.3.2, but differs from it in the fact the it also inhibits progress
in other concurrent components of a process. Since we have not yet introduced con-
currency (this will be done in Section 2.4), this difference is at the moment academic.
However, because all our process algebras build upon basic process algebras, we already
introduce it here, in a BPA setting. The extended process algebra that results is called
BPAδ̇; it was first introduced by BAETEN AND BERGSTRA [24].

Definition 2.3.5.1 (Signature of BPAδ̇)
The signature of BPAδ̇ consists of the actions {a|a ∈ A}, the deadlock constant δ, the im-
mediate deadlock constant δ̇, the alternative composition operator +, and the sequential
composition operator ·.

☞ Observe that both δ and δ̇ are present in the signature of BPAδ̇. As we will see later,
δ can often be expressed in terms of δ̇; therefore it makes little sense to introduce the
latter in a setting that does not include the former.

Definition 2.3.5.2 (Axioms of BPAδ̇)
The process algebra BPAδ̇ is axiomatized by the axioms of BPA given in Definition 2.3.1.6
on page 8, Axiom A6A shown in Table 2.6 on page 14, Axiom A7 shown in Table 2.5 on
page 14, and Axioms A6ID–A7ID shown in Table 2.10: BPAδ̇ = A1–A5 + A6A + A7 + A6ID–
A7ID.

x+ δ̇ = x A6ID

δ̇·x = δ̇ A7ID

Table 2.10: Additional axioms for BPAδ̇.

☞ These axioms need some explaining. First, Axioms A6ID and A7ID express that δ̇ is a
proper zero element with respect to the alternative composition, and a left-zero element
with respect to the sequential composition. So apparently δ̇ here takes over the rôle δ
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used to fulfill in BPAδ. This means, of course, that δ cannot be a zero element with re-
spect to the alternative composition any longer, since we now have committed ourselves
to BPAδ̇ ` δ + δ̇ = δ. Hence, we have to drop Axiom A6 from our axioms. We replace
it by a weakened version of it, Axiom A6A. In the resulting axiomatization we still have
that BPAδ̇ ` x+δ = x for process terms x that are not derivably equal to δ̇. So, BPAδ̇ is a
conservative extension of BPAδ: all equalities between closed terms of BPAδ that hold in
BPAδ also hold in BPAδ̇, and vice versa. Viewed in that light, the rôle of δ has not changed
at all; we simply have extended our signature.

Definition 2.3.5.3 (Semantics of BPAδ̇)
The semantics of BPAδ̇ are given by the term-deduction system T(BPAδ̇) induced by the
deduction rules for BPAδ given in Definition 2.3.2.6 on page 15 and the deduction rules
for the immediate-deadlock predicate shown in Table 2.11.

ID(δ̇)
ID(x), ID(y)

ID(x+ y)
ID(x)

ID(x·y)

Table 2.11: Deduction rules for immediate-deadlock predicate.

☞ Note that in the term-deduction system T(BPAδ̇) the constants δ and δ̇ are indistin-
guishable except for the fact that ID holds for δ̇, while it does not for δ. This difference
will be crucial when we introduce concurrency later on.

Definition 2.3.5.4 (Bisimulation for BPAδ̇)
Bisimulation for BPAδ̇ is defined as follows; a binary relationR on closed terms is a bisim-
ulation iff the following transfer conditions hold for all closed terms p and q:

(i). If RS(p,q) and T(BPAδ̇) î p a→ p′, where a ∈ A, then there exists a process term q′
such that T(BPAδ̇) î q a→ q′ and RS(p′, q′),

(ii). if RS(p,q) and T(BPAδ̇) î p a→√, where a ∈ A, then T(BPAδ̇) î q a→√,

(iii). if RS(p,q) and T(BPAδ̇) î ID(p), then T(BPAδ̇) î ID(q).

☞ Bisimulation for BPAδ̇ is like bisimulation for BPA, but now we also require that the
value of the immediate-deadlock predicate is the same for terms that are related.

Definition 2.3.5.5 (Bisimulation Model for BPAδ̇)
The bisimulation model for BPAδ̇ is defined in the same way as for BPA. Replace “BPA”
by “BPAδ̇” in Definition 2.3.1.16 on page 12.

Definition 2.3.5.6 (Basic Terms of BPAδ̇)
We define (δ, δ̇)-basic terms inductively as follows:

(i). The constant δ̇ is a (δ, δ̇)-basic term,

(ii). if a ∈ Aδ, then a is a (δ, δ̇)-basic term,
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(iii). if a ∈ Aδ and t is a (δ, δ̇)-basic term, then a·t is a (δ, δ̇)-basic term,

(iv). if s and t are (δ, δ̇) basic terms, then s+ t is an (δ, δ̇)-basic term.

From now on, when we speak of basic terms in the context of BPAδ̇, we mean (δ, δ̇)-basic
terms.

☞ Finally, we would like to note that there is no basic process algebra that combines
both the empty process and the immediate deadlock process. Although such a process
algebra is conceivable, it leads to quite contorted axioms and deduction rules. We will
return to this problem in Chapter 6.

2.4 Process Algebras

In this section, we will extend the basic process algebras we introduced in Section 2.3 with
the so-called free merge operator. This operator allows two processes to execute side-by-
side, simultaneously, in an interleaving manner. The resulting class is historically known
as the class of Process Algebras (PA’s) (note the capitals).

2.4.1 PA

We first define the process algebra PA, which is based on BPA. There are two new oper-
ators: the free merge operator, denoted ‖, and the left merge operator, denoted ‖ . The
latter is an auxiliary operator , an operator that in itself is not very useful, but neverthe-
less is needed in order to define other operators, in this case the free merge (see MOLLER

[143])).

Definition 2.4.1.1 (Signature of PA)
The signature of PA consists of the actions {a|a ∈ A}, the alternative composition opera-
tor +, the sequential composition operator ·, the free merge operator ‖, and the left merge
operator ‖ .

Definition 2.4.1.2 (Axioms of PA)
The process algebra PA is axiomatized by the axioms of BPA given in Definition 2.3.1.6
on page 8 and Axioms M1–M4 shown in Table 2.12: PA = A1–A5 + M1–M4.

x ‖ y = x ‖ y + y ‖ x M1

a ‖ x = a·x M2

a·x ‖ y = a·(x ‖ y) M3

(x+ y) ‖ z = x ‖ z+ y ‖ z M4

Table 2.12: Additional axioms for PA.

☞ In the process term x ‖ y, the free merge operator executes x and y in parallel, gen-
erating all possible interleavings of the two. In a similar manner, in the process term
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x ‖ y, the left merge operator executes x and y in parallel, with the restriction that the
first action must necessarily come from x. Now we can explain the Axiom M1: it expresses
that the parallel execution of x and y starts either with x, or with y. Axiom M2 expresses
that if we execute a and x in parallel, starting with a, this is the same as executing a
followed by x. Similarly, Axiom M3 expresses that if we execute a·x and y in parallel,
starting with a·x, this is the same as executing a followed by the execution of x and y in
parallel. Finally, Axiom M4 expresses that the left merge right-distributes over the alter-
native composition. The reason that we do not have a corresponding left-distributivity
is, as with the sequential composition, that if we would, our semantics would collapse to
a trace semantics. Note that distributivity does not hold for the free merge, which is why
the left merge is needed for a finite axiomatization of the free merge (see also MOLLER

[143]).
Not obvious on first sight, but still true, is the fact that these axioms lead to a free

merge that is associative: for all closed terms x, y, and z we have PA ` (x ‖ y) ‖ z = x ‖
(y ‖ z). This means we can leave out the parentheses in such expressions. Furthermore,
the free merge is commutative: for all terms x and y we have PA ` x ‖ y = y ‖ x.

Example 2.4.1.3 (Calculating in PA)
Let s ≡ a·a and t ≡ b·b. Then we have:

PA ` s ‖ t = a·a ‖ b·b
= a·a ‖ b·b+ b·b ‖ a·a
= a·(a ‖ b·b)+ b·(b ‖ a·a)
= a·(a ‖ b·b+ b·b ‖ a)+ b·(b ‖ a·a+ a·a ‖ b)
= a·(a·b·b+ b·(b ‖ a))+ b·(b·a·a+ a·(a ‖ b))
= a·(a·b·b+ b·(b ‖ a+ a ‖ b))+ b·(b·a·a+ a·(a ‖ b+ b ‖ a))
= a·(a·b·b+ b·(b·a+ a·b))+ b·(b·a·a+ a·(a·b+ b·a))

☞ As should be obvious from this, fully expanding a concurrent process leads to an ex-
ponential explosion (see pages 73–75 of BAETEN AND WEIJLAND [38] for an expansion of
a·a·a ‖ b·b·b ‖ c·c·c, if you dare . . . ). Luckily, often we do not have to expand such
a process, because there are algebraic properties (so-called expansion theorems) we can
exploit to keep expansion to an absolute minimum. In Chapter 7 we will see an example
of this.

Example 2.4.1.4 (Cola Machine in PA)
Suppose the 10 cent coin gets withdrawn because it costs only 6 cents to counterfeit it.
As a temporary measure, the central bank introduces new coins of denominations 1, 2,
3, and 4 cent (these are just as easy to counterfeit, but not at a profit). We need to adapt
cola-machine3, so that it accepts 15 cents in the form of one coin of each denomination.
Using the free merge we can do this quite easily, as follows:

cola-machine6 = (i1 ‖ i2 ‖ i3 ‖ i4 ‖ i5)·p·s

Had we been forced to do this in BPA, the specification of cola-machine6 would have con-
tained 5! = 120 subterms, in order to specify all possible ways to insert the five coins.
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Definition 2.4.1.5 (Semantics of PA)
The semantics of PA are given by the term-deduction system T(PA) induced by the de-
duction rules for BPA given in Definition 2.3.1.11 on page 10 and the deduction rules for
the free merge shown in Table 2.13.

x a→ x′
x ‖ y a→ x′ ‖ y

y a→ y′
x ‖ y a→ x ‖ y′

x a→ x′
x ‖ y a→ x′ ‖ y

x a→√

x ‖ y a→ y
y a→√

x ‖ y a→ x
x a→√

x ‖ y a→ y

Table 2.13: Deduction rules for free merge.

☞ The deduction rules speak for themselves. Note that a left merge turns into a free
merge after it has done an action. Furthermore, after one component of a free merge has
successfully terminated, the free merge disappears and the other component continues
on its own.

Definition 2.4.1.6 (Bisimulation and Bisimulation Model for PA)
Bisimulation for PA and the corresponding bisimulation model for PA are defined in the
same way as for BPA. Replace “BPA” by “PA” in Definition 2.3.1.13 on page 11 and Defi-
nition 2.3.1.16 on page 12.

Definition 2.4.1.7 (Basic Terms of PA)
When we speak of basic terms in the context of PA, we mean deadlock-free basic terms
as defined in Definition 2.3.1.17 on page 13.

2.4.2 PAδ

In this section, we add the deadlock constant δ to PA. As this is entirely straightforward,
we give hardly any comments. The resulting process algebra is called PAδ.

Definition 2.4.2.1 (Signature of PAδ)
The signature of PAδ consists of the actions {a|a ∈ A}, the deadlock constant δ, the al-
ternative composition operator +, the sequential composition operator ·, the free merge
operator ‖, and the left merge operator ‖ .

Definition 2.4.2.2 (Axioms of PAδ)
The process algebra PAδ is axiomatized by the axioms of PA given in Definition 2.4.1.2
on page 21 and Axioms A6–A7 shown in Table 2.5 on page 14: PAδ = A1–A7 + M1–M4.

☞ Note that the a in Axioms M2 and M3 now also can take the value δ, as δ is now part
of the signature.
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Definition 2.4.2.3 (Semantics of PAδ)
The semantics of PAδ are given by the term-deduction system T(PAδ) induced by the
deduction rules for BPAδ given in Definition 2.3.2.6 on page 15 and the deduction rules
for the free merge shown in Table 2.13 on the page before.

Definition 2.4.2.4 (Bisimulation and Bisimulation Model for PAδ)
Bisimulation for PAδ and the corresponding bisimulation model for PAδ are defined in
the same way as for BPA. Replace “BPA” by “PAδ” in Definition 2.3.1.13 on page 11 and
Definition 2.3.1.16 on page 12.

Definition 2.4.2.5 (Basic Terms of PAδ)
When we speak of basic terms in the context of PAδ, we mean standard basic terms as
defined in Definition 2.3.2.8 on page 15.

2.4.3 PAε

In this section, we add the empty process constant ε to PA. The resulting process algebra
is called PAε.

Definition 2.4.3.1 (Signature of PAε)
The signature of PAε consists of the actions {a|a ∈ A}, the deadlock constant δ, the empty
process constant ε, the alternative composition operator +, the sequential composition op-
erator ·, the free merge operator ‖, and the left merge operator ‖ .

Definition 2.4.3.2 (Axioms of PAε)
The process algebra PAε is axiomatized by the axioms of PAδ given in Definition 2.4.2.2
on the page before minus Axiom M2, plus Axioms A8–A9 shown in Table 2.7 on page 16,
and Axioms ME1–ME3 shown in Table 2.14: PAε = A1–A9 + M1 + M3–M4 + ME1–ME3.

ε ‖ ε = ε ME1

ε ‖ a·x = δ ME2

ε ‖ (x+ y) = ε ‖ x+ ε ‖ y ME3

Table 2.14: Additional axioms for PAε.

☞ The additional axioms for PAε are solely needed to assure that x ‖ y contains an ε-
summand iff both x and y contain one; all axioms of PAδ remain valid in PAε. Note that
δ can be defined in terms of the ε and the ‖ : we have PAε ` ε ‖ a·a = δ, so it is logical
to include δ in the signature.

Axiom ME1 expresses that if both sides of a left merge have the option to terminate,
then the left merge has that option also. Axiom ME2 may be more surprising. The ra-
tionale behind it is that intuitively the left merge can only commence executing its right
argument after it has done at least one action of its left argument, and since that is im-
possible when the left argument is ε, the whole expression is equal to deadlock. Axiom
ME3 expresses that ε ‖ left-distributes over the alternative composition. This is needed,
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along with the right-distributivity of Axiom M4, to propagate ε-summands down, to a
level where either Axiom ME1 or Axiom ME2 can be applied. Note that ε ‖ x can take the
values ε and δ: for all closed terms x we either have PAε ` ε ‖ x = ε (namely, for those
x that contain an ε-summand, i.e., x such that PAε ` x + ε = x), or PAε ` ε ‖ x = δ (for
all other x). So, Axiom ME3 does in no way jeopardize our bisimulation semantics, as for
example Axiom LD from Table 2.2 on page 9 would.

Then, note that Axiom M2 is not present anymore in PAε. This is because, for closed
terms, it has become derivable: substituting ε for x in Axiom M3 gives Axiom M2. In gen-
eral, we often encounter axioms that are “twins”, i.e., one axiom handles the case where
some subexpression is a, the other one where it is a·x. In a setting where we have the
empty process, we can drop the former, as it is a special case of the latter (namely the
case x = ε). A similar observation holds for the deduction rules. In this way the empty
process often makes our axiomatizations and semantics simpler, or at least shorter.

Finally, these axioms lead to a free merge that had ε as a unit element: for all closed
terms x we have PAε ` ε ‖ x = x and PAε ` x ‖ ε = x. Furthermore, ε is a right-unit
element of the left merge: for all closed terms x we have PAε ` x ‖ ε = x. It is not a
left-unit element, as we e.g. have PA ` ε ‖ a = δ.

Definition 2.4.3.3 (Semantics of PAε)
The semantics of PAε are given by the term-deduction system T(PAε) induced by the
deduction rules for BPAδε given in Definition 2.3.4.4 on page 18 and the deduction rules
for the free merge shown in Table 2.15.

x a→ x′
x ‖ y a→ x′ ‖ y

y a→ y′
x ‖ y a→ x ‖ y′

x a→ x′
x ‖ y a→ x′ ‖ y

x↓, y↓
(x ‖ y)↓

x↓, y↓
(x ‖ y)↓

Table 2.15: Deduction rules for free merge with empty process.

☞ The deduction rules for the free merge with the empty process are as expected. Note
that x ‖ y and x ‖ y can terminate iff both x and y can.

Definition 2.4.3.4 (Bisimulation and Bisimulation Model for PAε)
Bisimulation for PAε and the corresponding bisimulation model for PAε are defined in
the same way as for BPAε. Replace “BPAε” by “PAε” in Definition 2.3.3.5 on page 17 and
Definition 2.3.3.6 on page 17.

Definition 2.4.3.5 (Basic Terms of PAε)
When we speak of basic terms in the context of PAε, we mean (δ, ε)-basic terms as defined
in Definition 2.3.4.6 on page 19.
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Remark 2.4.3.6 (Comparison with the Literature)
Our definitions for PAε are based on those given by VRANCKEN [197]. A different approach
is taken by BAETEN AND WEIJLAND [38], who do not encode the behavior of the empty
process with respect to the free merge within the left merge as we do. Instead, they define
an auxiliary operator, the termination operator, denoted

√
, such that

√
(x) is equal to ε if

x contains an ε-summand, and δ otherwise (this can be expressed in our process algebra
by ε ‖ x). Both approaches are equally valid, and our preference for the first method is
probably a matter of taste.

2.4.4 PAδ̇

In this section, we combine the free merge with the δ̇ of BPAδ̇ treated in Section 2.3.5.
The resulting process algebra is called PAδ̇. The difference between δ and δ̇, that was
somewhat academic in the setting of BPAδ̇, becomes very clear when the free merge is
present.

Definition 2.4.4.1 (Signature of PAδ̇)
The signature of PAδ̇ consists of the actions {a|a ∈ A}, the deadlock constant δ, the im-
mediate deadlock constant δ̇, the alternative composition operator +, the sequential com-
position operator ·, the free merge operator ‖, and the left merge operator ‖ .

Definition 2.4.4.2 (Axioms of PAδ̇)
The process algebra PAδ̇ is axiomatized by the axioms of BPAδ̇ given in Definition 2.3.5.2
on page 19, Axioms M1 and M4 shown in Table 2.12 on page 21, and Axioms M2ID–M3ID
and MID1–MID2 shown in Table 2.16: PAδ̇ = A1–A5 + A6A + A7 + A6ID–A7ID + M1 +
M2ID–M3ID + M4 + MID1–MID2.

a ‖ (x+ δ) = a·(x+ δ) M2ID

a·x ‖ (y+ δ) = a·(x ‖ (y + δ)) M3ID

x ‖ δ̇ = δ̇ MID1

δ̇ ‖ x = δ̇ MID2

Table 2.16: Additional axioms for PAδ̇.

☞ These axioms need quite some explaining. First of all, in a context with the free merge,
the immediate deadlock should inhibit all further progress if it is the only summand that
is left on one of the sides. So, whereas we have, as usual, that PAδ̇ ` a ‖ δ = a·δ, for
the immediate deadlock we should have PAδ̇ ` a ‖ δ̇ = δ̇. In other words, the immediate
deadlock represents a catastrophic stop, leading to a complete halt of the entire process.
That is, of course, if no other summands are present; PAδ̇ ` a ‖ (b+ δ̇) = a·b+ b·a, as
the immediate deadlock can be avoided in this case.

This intuition immediately disqualifies Axioms M2 and M3 from inclusion in PAδ̇, as
they “do not check” the right argument of the left merge for immediate deadlock before
executing an action from the left argument. We weaken them to Axioms M2ID and M3ID,
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respectively. For basic terms x such that BPAδ̇ ø x = δ̇, we have BPAδ̇ ` x + δ = x, and
therefore for such terms Axioms M2ID and M3ID are just as strong as Axioms M2 and
M3 were. However, terms of the form x ‖ δ̇ cannot be rewritten by Axioms M2ID and
M3ID. For this purpose we define Axioms MID1 and MID2. They make sure that terms that
just contain an immediate deadlock on either side of the left merge, reduce to immediate
deadlock themselves.

The above construction will return several times, so we paraphrase it once more. The
expression x + δ should be intuitively interpreted as “no δ̇ allowed here”. Axioms that
contain x+δ do so as a systematic trick to weaken them, in order to prevent their appli-
cation to a lone δ̇ summand.

Example 2.4.4.3 (Cola Machine in PAδ̇)
We extend cola-machine3 from page 10 in such a way that it will automatically shut down
when it starts overheating. Let o denote the action that results when some temperature
sensor measures too high a temperature. We get the following specification:

cola-machine7 = (i10·i5 + i5·(i10 + i5·i5))·p·s ‖ o·δ̇
So, cola-machine7 behaves like cola-machine3 as long as no overheating occurs. If over-
heating occurs, i.e., if o gets executed, cola-machine7 comes to a halt immediately.

Definition 2.4.4.4 (Semantics of PAδ̇)
The semantics of PAδ̇ are given by the term-deduction system T(PAδ̇) induced by the
deduction rules for BPAδ̇ given in Definition 2.3.5.3 on page 20 and the deduction rules
for the free merge shown in Table 2.17.

x a→ x′, ¬ID(y)
x ‖ y a→ x′ ‖ y

y a→ y′, ¬ID(x)
x ‖ y a→ x ‖ y′

x a→ x′, ¬ID(y)
x ‖ y a→ x′ ‖ y

x a→√, ¬ID(y)
x ‖ y a→ y

y a→√, ¬ID(x)
x ‖ y a→ x

x a→√, ¬ID(y)
x ‖ y a→ y

ID(x)
ID(x ‖ y)

ID(y)
ID(x ‖ y)

ID(x)
ID(x ‖ y)

ID(y)
ID(x ‖ y)

Table 2.17: Deduction rules for free merge with immediate deadlock.

☞ The deduction rules of PAδ̇ define the immediate-deadlock predicate ID(x) that is true
iff PAδ̇ ` x = δ̇. Using this predicate, it then becomes easy to define the deduction rules
for the free merge and the left merge: they are very much like those we defined for PA
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(see Table 2.13 on page 23), with the exception that we now require that one side of the
free merge or left merge can only execute an action if the immediate-deadlock predicate
does not hold for the other side. An additional four rules are needed to ensure that the
immediate-deadlock predicate is defined on all process terms of PAδ̇.

Definition 2.4.4.5 (Bisimulation and Bisimulation Model for PAδ̇)
Bisimulation for PAδ̇ and the corresponding bisimulation model for PAδ̇ are defined in
the same way as for BPAδ̇. Replace “BPAδ̇” by “PAδ̇” in Definition 2.3.5.4 on page 20 and
Definition 2.3.5.5 on page 20.

Definition 2.4.4.6 (Basic Terms of PAδ̇)
When we speak of basic terms in the context of PAδ̇, we mean (δ, δ̇) basic terms as de-
fined in Definition 2.3.5.6 on page 20.

2.5 Algebras of Communicating Processes

In this section, we will extend the free merge of the Process Algebras we introduced in
Section 2.4 to the merge operator. This operator allows two processes to execute side-by-
side, simultaneously, in an interleaving manner (as did the free merge), but in addition
allows these processes to communicate with each other or synchronize. This class is his-
torically known as the class of Algebras of Communicating Processes (ACP’s). Combined
with the class of Process Algebras, it is known as the class of Concurrent Process Alge-
bras.

2.5.1 ACP

We first define the process algebra ACP, which is based on BPAδ (as δ can be defined in
terms of the merge, we are forced to include it in the signature). There are three merge-
like operators: the merge operator, denoted ‖, which is an extension of the free-merge,
the left merge operator, denoted ‖ , and the communication merge operator, denoted
| . Finally, there is a completely new operator: the encapsulation operator, denoted ∂H,
which provides a means for prohibiting certain actions from occurring.

Definition 2.5.1.1 (Communication Function)
For this section, and all sections to come, we presume the existence of a fixed, commu-
tative, associative, complete function γ : Aδ ×Aδ → Aδ, that can be considered a param-
eter of the respective process algebra. The function γ has to be strict in the sense that it
should always evaluate to δ when one or both of its arguments is δ.

☞ The function γ is meant to define what happens if two action a and b execute simul-
taneously on both sides of the merge (this simultaneous execution is also called commu-
nication or synchronization). If, for example, we have that γ(a,b) = c, then this should
be interpreted as “if we execute a and b simultaneously, together they result in the ex-
ecution of the action c”. If γ(a,b) = δ, this should be interpreted as “a and b cannot
execute simultaneously”.

The function γ should be commutative and associative because in a complex process
more than two actions may be executed simultaneously, and in that case we do not want
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the outcome to depend on the order of these actions. It should be strict because we do
not want δ to communicate with any action (this would have extremely undesirable re-
sults).

Note that our definition of γ is different from the one given by BAETEN AND WEIJLAND

[38] in the sense that in their definition γ is undefined where we have γ(a,b) = δ. We
find their definition less convenient, as it leads to unnecessary case distinctions in proofs
and the duplication of some axioms.

Definition 2.5.1.2 (Signature of ACP)
The signature of ACP consists of the actions {a|a ∈ A}, the deadlock constant δ, the alter-
native composition operator +, the sequential composition operator ·, the merge operator
‖, the left merge operator ‖ , the communication merge operator |, and the encapsulation
operator ∂H.

Definition 2.5.1.3 (Axioms of ACP)
The process algebra ACP is axiomatized by the axioms of PAδ given in Definition 2.4.2.2
on page 23 minus Axiom M1, plus Axioms CM1–CM6, CF, and D1–D4 shown in Table 2.18:
ACP = A1–A7 + M2–M4 + CM1–CM6 + CF.

x ‖ y = x ‖ y + y ‖ x+ x | y CM1

a | b·x = (a | b)·x CM2

a·x | b = (a | b)·x CM3

a·x | b·y = (a | b)·(x ‖ y) CM4

(x+ y) | z = x | z+ y | z CM5

x | (y+ z) = x | y + x | z CM6

a | b = c if γ(a,b) = c CF

∂H(a) = a if a ∉ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x)+ ∂H(y) D3

∂H(x·y) = ∂H(x)·∂H(y) D4

Table 2.18: Additional axioms for ACP.

☞ We go through the axioms one by one. First, Axiom M1 is replaced by Axiom CM1,
expressing that x ‖ y either executes an action from x, or an action from y, or combines
actions from x and y in a communication. The last option is represented by x | y, the
process that combines an action from x with an action from y, and then continues as
the merge of the remainders. Axioms CM2, CM3, and CM4 express that if in x | y both
x and y only have one action at the head, these two action are necessarily the ones that
communicate with each other. Axioms CM5 and CM6 express that the communication
merge both left-distributes and right-distributes over the alternative composition. Axiom
CF expresses that the communication merge of two actionsa and b is simply the outcome
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of γ(a,b). As in PA, these axioms lead to a merge that is associative and commutative
for closed terms. Note, however, that the free merge of PA is commutative even for open
terms, while the merge of ACP is only commutative for closed terms.

Then the encapsulation operator. The intuition behind it is that given a certain set of
symbols H ⊆ A, the process ∂H(x) should behave as x, but refrain from any actions a
such that a ∈ H. Or, in other words, ∂H(x) should rename all such actions to δ. Axioms
D1 and D2 express this: ∂H(a) should be a if a ∉ H and δ if a ∈ H (note that this also
defines ∂H(δ) = δ, as a ranges over Aδ in axioms). Finally, Axioms D3 and D4 say that
the encapsulation distributes over the alternative and sequential composition. In this
way the encapsulation propagates down to the action level, where either Axiom D1 or
D2 can be applied. Notice that the encapsulation does not distribute over the merge (see
Example 2.5.1.4).

Example 2.5.1.4 (Calculating in ACP)
Let s ≡ a·a and t ≡ b·b, and suppose that γ(a,b) = c. Then we have:

ACP ` s ‖ t = a·a ‖ b·b
= a·a ‖ b·b+ b·b ‖ a·a+ a·a | b·b
= a·(a ‖ b·b)+ b·(b ‖ a·a)+ (a | b)·(a ‖ b)
= a·(a ‖ b·b+ b·b ‖ a+ a | b·b)+
b·(b ‖ a·a+ a·a ‖ b+ b | a·a)+
c·(a ‖ b+ b ‖ a+ a | b)

= a·(a·b·b+ b·(b ‖ a)+ (a | b)·b)+
b·(b·a·a+ a·(a ‖ b)+ (b | a)·a)+
c·(a·b+ b·a+ c)

= a·(a·b·b+ b·(b ‖ a+ a ‖ b+ b | a)+ c·b)+
b·(b·a·a+ a·(a ‖ b+ b ‖ a+ a | b)+ c·a)+
c·(a·b+ b·a+ c)

= a·(a·b·b+ b·(b·a+ a·b+ c)+ c·b)+
b·(b·a·a+ a·(a·b+ b·a+ c)+ c·a)+
c·(a·b+ b·a+ c)

If we now define H = {a,b}, then we get:

ACP ` ∂H(s ‖ t) = . . .
= δ·(δ·δ·δ+ δ·(δ·δ+ δ·δ+ c)+ c·δ)+
δ·(δ·δ·δ+ δ·(δ·δ+ δ·δ+ c)+ c·δ)+
c·(δ·δ+ δ·δ+ c)

= . . .
= c·c

As we can see, the encapsulation effectively prohibits the actions a and b from occurring,
and hence they are forced to communicate with each other, leading to the execution of
c·c.
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Example 2.5.1.5 (Cola Machine in ACP)
Using ACP, we can now define cola-machine3 from page 10 in a simpler way. Define the
communication function γ as follows: γ(i5, i5) = i10, and δ everywhere else. Then define:

cola-machine8 = (i5 ‖ i5 ‖ i5)·p·s

So, cola-machine8 wants three 5 cent coins, but it is also willing to accept a 10 cent coin
as if it were two 5 cent coins. Note that we have ACP ` cola-machine3 = cola-machine8.

Suppose a 15 cent coin also exists, and that for some reason we do not want to ac-
cept 10 cent coins anymore. Then we can extend our communication function such that
γ(i5, i10) = γ(i10, i5) = i15, let H = {i10}, and define:

cola-machine9 = ∂H(i5 ‖ i5 ‖ i5)·p·s

Now cola-machine9 accepts either three 5 cent coins, or one 15 cent coin, but nothing else.
Note that the action i15 results from the simultaneous execution of all three i5 actions.

Definition 2.5.1.6 (Semantics of ACP)
The semantics of ACP are given by the term-deduction system T(ACP) induced by the
deduction rules for PAδ given in Definition 2.4.2.3 on page 24, the additional deduction
rules for the merge shown in Table 2.19, and the deduction rules for the encapsulation
shown in Table 2.20 on the following page.

x a→ x′, y b→ y′, γ(a,b) = c
x ‖ y c→ x′ ‖ y′

x a→ x′, y b→ y′, γ(a,b) = c
x | y c→ x′ ‖ y′

x a→ x′, y b→√, γ(a,b) = c
x ‖ y c→ x′

x a→ x′, y b→√, γ(a,b) = c
x | y c→ x′

x a→√, y b→ y′, γ(a,b) = c
x ‖ y c→ y′

x a→√, y b→ y′, γ(a,b) = c
x | y c→ y′

x a→√, y b→√, γ(a,b) = c
x ‖ y c→√

x a→√, y b→√, γ(a,b) = c
x | y c→√

Table 2.19: Additional deduction rules for merge.

☞ The additional deduction rules for the merge are straightforward, but have to be de-
fined in quadruplicate because both x and y may or may not have the possibility to do
a terminating step. The deduction rules for the encapsulation are even simpler: ∂H(x)
behaves like x, provided it only does steps that are not prohibited.
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x a→ x′, a ∉ H
∂H(x)

a→ ∂H(x′)
x a→√, a ∉ H
∂H(x)

a→√

Table 2.20: Deduction rules for encapsulation.

Definition 2.5.1.7 (Bisimulation and Bisimulation Model for ACP)
Bisimulation for ACP and the corresponding bisimulation model for ACP are defined in
the same way as for BPA. Replace “BPA” by “ACP” in Definition 2.3.1.13 on page 11 and
Definition 2.3.1.16 on page 12.

Definition 2.5.1.8 (Basic Terms of ACP)
When we speak of basic terms in the context of ACP, we mean standard basic terms as
defined in Definition 2.3.2.8 on page 15.

2.5.2 ACPε

In this section, we extend PAε to include the merge operator. The resulting process alge-
bra is called ACPε.

Definition 2.5.2.1 (Signature of ACPε)
The signature of ACPε consists of the actions {a|a ∈ A}, the deadlock constant δ, the
empty process constant ε, the alternative composition operator +, the sequential compo-
sition operator ·, the merge operator ‖, the left merge operator ‖ , the communication
merge operator | , and the encapsulation operator ∂H.

Definition 2.5.2.2 (Axioms of ACPε)
The process algebra ACPε is axiomatized by the axioms of PAε given in Definition 2.4.3.2
on page 24 minus Axiom M1, plus Axioms CM1, CM4-CM6, CF, and D1–D4 shown in Ta-
ble 2.18 on page 29, and Axioms ME4–ME5 and D5 shown in Table 2.21: ACPε = A1–A9 +
M3–M4 + ME1–ME5 + CM1 + CM4-CM6 + CF + D1–D5.

x | ε = δ ME4

ε | x = δ ME5

∂H(ε) = ε D5

Table 2.21: Additional axioms for ACPε.

☞ The axioms of ACPε are entirely straightforward. Because we have the empty process,
Axioms M2, CM2, and CM3 become derivable for closed terms, and can be dropped. We
introduce Axioms ME4 and ME5 to express that the empty process does not communicate
in any way, and Axiom D5 to express that the empty process is immune to encapsulation.



2.5 • Algebras of Communicating Processes 33

Note that, as in PAε, the empty process is a unit element of the merge, and a right-unit
element of the left merge.

Definition 2.5.2.3 (Semantics of ACPε)
The semantics of ACPε are given by the term-deduction system T(ACPε) induced by the
deduction rules for PAε given in Definition 2.4.3.3 on page 25, the additional deduction
rules for the merge shown in Table 2.22, and the deduction rules for the encapsulation
shown in Table 2.23.

x a→ x′, y b→ y′, γ(a,b) = c
x ‖ y c→ x′ ‖ y′

x a→ x′, y b→ y′, γ(a,b) = c
x | y c→ x′ ‖ y′

Table 2.22: Additional deduction rules for merge with empty process.

x a→ x′, a ∉ H
∂H(x)

a→ ∂H(x′)
x↓

∂H(x)↓

Table 2.23: Deduction rules for encapsulation with empty process.

☞ The deduction rules for the merge with the empty process are similar to those without
the empty process (shown in Table 2.19 on page 31). Because we have the empty process,
quadruplication is not necessary. Again we see that the introduction of the empty pro-
cess often simplifies matters.

The deduction rules for the encapsulation with the empty process are very similar to
those of Table 2.20 on the preceding page; ∂H(x) behaves like x, provided it only does
steps that are not forbidden. In particular, ∂H(x) has the option to terminate iff x has
the option to terminate.

Remark 2.5.2.4 (Deduction rules for ACPε)
Note that there is no deduction rule of the form:

x↓, y↓
(x | y)↓

because the process ε | ε cannot successfully terminate: we have that ACPε ` ε | ε = δ,
and T(ACPε) î δ↓ô, hence T(ACPε) î (ε | ε)↓ô.
Definition 2.5.2.5 (Bisimulation and Bisimulation Model for ACPε)
Bisimulation for ACPε and the corresponding bisimulation model for ACPε are defined in
the same way as for BPAε. Replace “BPAε” by “ACPε” in Definition 2.3.3.5 on page 17 and
Definition 2.3.3.6 on page 17.
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Definition 2.5.2.6 (Basic Terms of ACPε)
When we speak of basic terms in the context of ACPε, we mean (δ, ε)-basic terms as de-
fined in Definition 2.3.4.6 on page 19.

2.5.3 ACPδ̇

In this section, we extend PAδ̇ to include the merge operator. The resulting process al-
gebra is called ACPδ̇.

Definition 2.5.3.1 (Signature of ACPδ̇)
The signature of ACPδ̇ consists of the actions {a|a ∈ A}, the deadlock constant δ, the im-
mediate deadlock constant δ̇, the alternative composition operator +, the sequential com-
position operator ·, the merge operator ‖, the left merge operator ‖ , the communication
merge operator | , and the encapsulation operator ∂H.

Definition 2.5.3.2 (Axioms of ACPδ̇)
The process algebra ACPδ̇ is axiomatized by the axioms of PAδ̇ given in Definition 2.4.4.2
on page 26 minus Axiom M1, plus Axioms CM1–CM6, CF, and D1–D4 shown in Table 2.18
on page 29, and Axioms MID3–MID4 and D6 shown in Table 2.24: ACPδ̇ = A1–A5 + A6A
+ A7 + A6ID–A7ID + M2ID–M3ID + M4 + CM1–CM6 + CF + MID1–MID4 + D1–D4 + D6.

x | δ̇ = δ̇ MID3

δ̇ | x = δ̇ MID4

∂H(δ̇) = δ̇ D6

Table 2.24: Additional axioms for ACPδ̇.

☞ The axioms of ACPδ̇ are a straightforward combination of axioms we have already en-
countered. We only have to add Axioms MID3 and MID4 to express that the immediate
deadlock prevents any further progress when it is the left or right argument of the com-
municating merge, as was also the case for the left merge (compare Axioms MID1 and
MID2 on page 26), and Axiom D6 to express that the immediate deadlock is immune to
encapsulation.

Definition 2.5.3.3 (Semantics of ACPδ̇)
The semantics of ACPδ̇ are given by the term-deduction system T(ACPδ̇) induced by the
deduction rules for PAδ̇ given in Definition 2.4.4.4 on page 27, the additional deduction
rules for the merge shown in Table 2.19 on page 31, and the additional deduction rules
for the immediate-deadlock predicate shown in Table 2.25 on the facing page and Ta-
ble 2.26 on the next page.

☞ Also the deduction rules are a straightforward combination of rules we have al-
ready encountered. We only need to add three additional rules to define the immediate-
deadlock predicate on x | y and ∂H(x).
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ID(x)
ID(x | y)

ID(y)
ID(x | y)

Table 2.25: Additional deduction rules for communication merge with
immediate-deadlock predicate.

ID(x)
ID(∂H(x))

Table 2.26: Additional deduction rules for encapsulation with
immediate-deadlock predicate.

Definition 2.5.3.4 (Bisimulation and Bisimulation Model for ACPδ̇)
Bisimulation for ACPδ̇ and the corresponding bisimulation model for ACPδ̇ are defined
in the same way as for BPAδ̇. Replace “BPAδ̇” by “ACPδ̇” in Definition 2.3.5.4 on page 20
and Definition 2.3.5.5 on page 20.

Definition 2.5.3.5 (Basic Terms of ACPδ̇)
When we speak of basic terms in the context of ACPδ̇, we mean (δ, δ̇)-basic terms as
defined in Definition 2.3.5.6 on page 20.

2.6 Properties

As we said in the introduction, we give no proofs in this chapter. However, that does
not keep us from stating some properties of the process algebras we introduced. In this
section, we list a number of important properties that are desirable in a process algebra,
and list the process algebras that have this property. For every property, we give a formal
definition, and an intuitive justification why that property is desirable.

Property 2.6.1.1 (Congruence)
Given a process algebra P and a binary relation R on closed terms of P, we call R a con-
gruence if it satisfies the following requirements:

(i). R is an equivalence relation (i.e., reflexive, symmetric, and transitive),

(ii). For every n ∈ N and every n-ary operator ⊗ of P, we have:

(∀i≤nR(ti, t′i)
) =⇒ R(⊗(t1, . . . , tn),⊗(t′1, . . . , t′n))

for all closed terms t1, . . . , tn, t′1, . . . , t′n of P.

This property holds for all process algebras given in this chapter with respect to bisim-
ulation.
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Example 2.6.1.2 (Congruence)
We take the process algebra BPA for P, and the corresponding bisimulation∼ as R. Con-
gruence then says that if:

s ∼ s′ and t ∼ t′

then also:

s+ t ∼ s′ + t′ and s·t ∼ s′·t′

So, since a+ b ∼ b+ a and c ∼ c, we should also have (a+ b)·c ∼ (b+ a)·c.

☞ This property is vital for any process algebra. If we would not have it, we would not
be able to build a bisimulation model.

Property 2.6.1.3 (Elimination to a Process Algebra)
Given process algebras P and P′ such that the signature of P′ is a subset of the signature
of P, we say that P has the elimination to P′ property if for every closed term s of P there
exists a closed term t of P′ such that P ` s = t.

This property holds for all Process Algebras and Algebras of Communicating Process
in this chapter with respect to their corresponding Basic Process Algebras.

Example 2.6.1.4 (Elimination to BPA)
We take the process algebra PA for P, and the closed term a·a ‖ b·b for s. Now, by the
elimination to BPA property, there must exist a BPA term t such that PA ` s = t. As we
have shown in Example 2.4.1.3 on page 22, such a term does indeed exist.

Property 2.6.1.5 (Elimination to Basic Terms)
Given a process algebra P we say that P has the elimination to basic terms property if for
every closed term s of P there exists a basic term t of P such that P ` s = t.

This property holds for all process algebras given in this chapter.

☞ The elimination to basic terms property often allows us to use induction on basic
terms when we want to prove some property for closed terms. We can do this because
every closed term has a corresponding basic term, and so every closed term is directly
or indirectly covered in the induction. For example, if we want to prove for all closed
terms x and y of PAδ that PAδ ` x ‖ y·δ = x·δ ‖ y, then we may assume, without loss of
generality, that x and y are basic terms.

Remark 2.6.1.6 (Elimination)
Properties 2.6.1.3 and 2.6.1.5 are often simply called elimination. When we say “P has
the elimination property”, it will always be clear from the context which variant of elim-
ination we intend.

Property 2.6.1.7 (Soundness)
Given a process algebra P and a structureM, we say thatM is a model of P if every equal-
ity between two closed terms implied by P does also hold in M. This is also called the
soundness property of P with respect to M.

This property holds for all bisimulation models given in this chapter with respect to
their corresponding process algebras.
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Example 2.6.1.8 (Soundness)
We take the process algebra PA for P and the bisimulation model of PA forM. As we have
PA ` a ‖ b = a·b+b·a, by the soundness property we should also have a ‖ b ∼PA a·b+b·a.
This is indeed the case, as can be checked with the deduction rules of PA.

☞ The soundness property expresses that a certain structure is indeed a model with
respect to a certain process algebra. As such, it is vital.

Property 2.6.1.9 (Completeness)
Given a process algebra P and a model M, we say the P is complete with respect to M if
every two closed terms that have the same interpretation in M, are also derivably equal
in P. This is also called the completeness property of P with respect to M.

This property holds for all process algebras given in this chapter with respect to their
corresponding bisimulation models.

Example 2.6.1.10 (Completeness)
We take the process algebra PA for P and the bisimulation model of PA forM. As we have
a ‖ b ∼PA a·b + b·a , by the completeness property we should also have PA ` a ‖ b =
a·b+ b·a . This is indeed the case, as can be checked with the axioms of PA.

☞ The completeness property expresses that a certain process algebra captures all
structure that is present in the model associated with it. This is desirable, but not vi-
tal. It is conceivable that the model contains more structure than we need to know, and
therefore we do not want to capture completely in our process algebra. For example,
our models may contain so-called junk, elements that are not represented by any closed
term. This can be done on purpose, e.g., because these elements represent solutions of
recursive equations.

The soundness and completeness properties are each other’s duals. If both hold, P
and M exactly capture the same “mathematical world”. In Chapter 4 we will examine
these properties in more detail.

Property 2.6.1.11 (Axioms of Standard Concurrency)
Given a process algebra P that contains a ‖ operator, we say that the axioms of standard
concurrency hold in P if for all closed terms x, y, and z of P the following six equalities
are derivable:

(i). P ` x | y = y | x
(ii). P ` x ‖ y = y ‖ x

(iii). P ` (x | y) | z = x | (y | z)
(iv). P ` (x ‖ y) ‖ z = x ‖ (y ‖ z)
(v). P ` x | (y ‖ z) = (x | y) ‖ z

(vi). P ` (x ‖ y) ‖ z = x ‖ (y ‖ z)
If ‖ or | are not present in the signature of P, the equalities above that contain them
are left out of the consideration.

The axioms of standard concurrency hold for all process algebras given in this chapter
that contain a ‖ operator.
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Remark 2.6.1.12 (Axioms of Standard Concurrency)
The equalities of Property 2.6.1.11 on the preceding page are historically known as the
axioms of standard concurrency (see for example page 97 of BAETEN AND WEIJLAND [38]).
However, as their status is not that of axioms, but that of from the axioms derivable equal-
ities (for closed terms), the name is quite misplaced and misleading.

Property 2.6.1.13 (Embedding)
Given two process algebras P and P′ and an injective projection function π from the sig-
nature of P into the signature of P′, we call π an embedding of P into P′ if all derivable
equalities between closed terms of P remain derivable equalities when projected into P′
by π. So, for all closed terms s and t of P, we should have:

P ` s = t =⇒ P′ ` π(s) = π(t)
If such a projection exists, we say that P can be embedded into P′, denoted by the em-
bedding relation P ⊆ P′. This relation is reflexive and transitive, and thus constitutes a
preorder.

The following embeddings hold between the process algebras given in this chapter:

(i). BPA ⊆ BPAδ ⊆ BPAδε, BPA ⊆ BPAε ⊆ BPAδε, BPAδ ⊆ BPAδ̇

(ii). PA ⊆ PAδ ⊆ PAε, PAδ ⊆ PAδ̇

(iii). ACP ⊆ ACPε, ACP ⊆ ACPδ̇

(iv). BPA ⊆ PA ⊆ ACP

(v). BPAδ ⊆ PAδ ⊆ ACP

(vi). BPAδε ⊆ PAε ⊆ ACPε

(vii). BPAδ̇ ⊆ PAδ̇ ⊆ ACPδ̇

Note that where a process algebra that has communication is used in the above em-
beddings, we also need to specify the communication function γ. In the embedding
PA ⊆ ACP, for example, we want the merge of ACP to behave as the free merge of PA, in
order to make a proper embedding. Therefore, we choose γ(a,b) to be δ for all a,b ∈ Aδ.
This is called the empty communication function, which is the only communication func-
tion possible in this case. In the embedding ACP ⊆ ACPε, however, there is no need to
commit ourselves to a specific communication function. In this case, any communica-
tion function will do, as both sides of the embedding exhibit the same communication
behavior.

So, whenever we write down an embedding, we will use the convention that in an em-
bedding P ⊆ P′ where P′ has communication while P has not, the communication func-
tion is implicitly understood to be empty. When P and P′ both have communication, we
implicitly take the embedding to be universally quantified over all communication func-
tions.

Example 2.6.1.14 (Embedding)
All the embeddings shown above can be implemented by taking the identity as the pro-
jection π (although this will not always be the case in what follows). As an example,
we take the embedding BPAδε ⊆ PAε. As BPAδε ` ε·(a + δ) = a, we should also have
PAε ` ε·(a+ δ) = a. This is indeed the case.
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Property 2.6.1.15 (Conservativity)
Given two process algebras P and P′ such that the signature of P is fully contained in P′,
we say that P′ is a conservative extension of P, if for all closed terms s and t of P we have:

P ` s = t ⇐⇒ P′ ` s = t

Note the difference with embedding: here we also require that P′ does not derive any
new equalities that did not hold in P. So, every conservative extension gives rise to an
embedding using the identity as projection function, but an embedding does not neces-
sarily give rise to a conservative extension.

Nevertheless, for all embeddings P ⊆ P′ given in Property 2.6.1.13, we also have that
P′ is a conservative extension of P.

2.7 Other Topics

Of course this chapter could be extended and made more complete. We mention some
topics of untimed process algebra we have not treated.

To begin with, we have said nothing about abstraction. Abstraction is a means of
declaring certain actions “internal” or “silent”, in order to reach a level of abstraction
where the identity of those actions is not relevant anymore. Process algebra without ab-
straction or the empty process is called concrete process algebra, while process algebra
with abstraction or the empty process is called abstract process algebra (BAETEN AND

BERGSTRA [13]).
Furthermore, we have not mentioned projection, a means for limiting the depth of

processes, renaming, an operator that changes the identity of actions, and state opera-
tors, which introduce automata in the realm of process algebra. Also not mentioned are
recursion and iteration, methods for constructing infinite processes.

And then, of course, ACP-style process algebra is neither the first nor the only alge-
braic process theory ever invented. We name three others: the Calculus of Communi-
cating Systems (CCS), as described by MILNER [142], Communicating Sequential Processes
(CSP), as described by HOARE [98], and the Algebraic Theory of Processes, as described by
HENNESSY [94].

All the above topics are treated, at least briefly, in BAETEN AND WEIJLAND [38] or BAE-
TEN AND VERHOEF [37], except for the iteration operator, which was introduced by BERG-
STRA, BETHKE, AND PONSE [41], and is also treated in the dissertation of FOKKINK [80]. For
more information about the state operator, see the dissertation of BLANCO [48].





3
Discrete-Time Process Algebra

3.1 Introduction

Untimed process algebra, as described in Chapter 2, lacks the ability to quantitatively
reason about time: although we can express the sequence in which actions take place, we
cannot make explicit the moment in time at which they occur.

One can reason, and very validly so, that abstracting from timing aspects is justifiable
because often timing aspects are irrelevant in the verification of systems. That this is no
idle claim can be observed from the many verifications in untimed process algebra that
have been published—see for example the ones given in [11, 120, 148, 167, 168, 188,
200]. However, sometimes the correctness of a protocol hinges on delicate timing aspects
(e.g., in Fischer’s Protocol, FISCHER [79], and see also Chapter 7), or the timing aspects
themselves of a protocol are the object of study (e.g., in HILLEBRAND [97]). In such cases
quantitative analysis of timing aspects cannot be avoided, and untimed process algebra
is therefore of little help. We can try to artificially encode timing aspects using untimed
process algebra, as is for example done by CERONE, et al. [61] (using the process algebra
CIRCAL, see MILNE [141]) and GROOTE AND VAN DE POL [90]. But this is stretching untimed
process algebra to its limits; clearly it was never built for these purposes.

So, we need to extend process algebra with constructs that allow the explicit specifica-
tion of timing aspects. One way to do this would be to parameterize our actions with real
numbers that represent time stamps (i.e., labels indicating the time of execution), leading
to so-called real-time process algebra. This is for example done by BAETEN AND BERGSTRA

[16, 22], and in the dissertations of KLUSENER [117] and FOKKINK [80]. Although this is
a very powerful and general method, its power also backfires: the resulting theories are
very complicated.

Another way of introducing time is to cut up time into a countably infinite number of
time-slices. Between these time-slices, a clock tick takes place that is explicitly indicated.
This leads to so-called discrete-time process algebra: the passing of time is modeled as
being discrete, consisting of the passage of a number of distinct time-slices. This is for
example done by BAETEN AND BERGSTRA [24, 25] and GROOTE [88]. The theories resulting
from this approach are much friendlier, and many theoretical results can be obtained.
Of course discrete-time process algebras are also less expressive than real-time ones.

41
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Whether this is an impediment to their practical application varies with the application
one has in mind. As is shown by BOS AND RENIERS [53], discrete-time process algebra
is certainly not a toy theory, and can be successfully applied in the analysis of real-life
problems.

In this chapter we will give an introduction in so-called relative-time discrete-time pro-
cess algebra. We will not give many theorems or proofs; most of these will be given in
Chapters 4, 5, and 6. Also we restrict ourselves to the treatment of Basic Process Alge-
bras only. The issues involving concurrency are complex enough to justify dedicating a
whole chapter to them: Chapter 5.

3.2 Basic Process Algebras

We introduce several relative-time discrete-time basic process algebras. To make the pas-
sage of time explicit, we introduce the so-called time-unit delay operator σrel. The process
σrel(x) behaves like x, except for the fact that everything happens one time-slice later.

3.2.1 BPA−drt–δ

In this section, we define the process algebra BPA−drt–δ. It is based on BPA, so there is no
deadlock present in its signature.

Definition 3.2.1.1 (Signature of BPA−drt–δ)
The signature of BPA−drt–δ consists of the undelayable actions {a|a ∈ A}, the alternative
composition operator +, the sequential composition operator ·, and the time-unit delay
operator σrel.

Remark 3.2.1.2 (Undelayable Actions)
By a doubly-underlined symbol, e.g. a, we denote a so-called undelayable action. An un-
delayble action can execute only in the time-slice it is initialized in; when the process it
is part of moves into the following time-slice, it is lost.

Note that in BAETEN AND BERGSTRA [21, 24, 25] the notation cts(a) (current time-slice
a) is used to denote the undelayable action a.

Remark 3.2.1.3 (Time-Unit Delay Operator)
The time-unit delay operator, notation σrel(x), postpones the execution of a process to
the next time-slice. The subscript rel in σrel indicates we are working in so-called relative
time, where time is measured relative to the moment a process is started (as opposed to
absolute time (see BAETEN AND BERGSTRA [24], or Section 8.2.2) where time is measured
relative to some fixed point in time, irrespective of the moment a process is started.) So
the process σrel(a), when initialized in the fifth time-slice, will execute an a in the sixth
time-slice.

Finally, note that the use of the greek letterσ to denote idling until the next time-slice
is due to HENNESSY AND REGAN [95] (see also Section 8.6.2), who in turn were inspired by
a notation due to PHILIPS [163]

Remark 3.2.1.4 (Time Factorization)
An important concept we use is the concept of time factorization, which enforces that
when a process moves into the next time-slice, this does not determine a choice. Or, in
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other words, when a process moves into the next-time-slice, no summands of the process
are lost.

We distinguish two variants: weak time factorization, and strong time factorization. In
weak time factorization, we only demand that no summands that start with moving to the
next time-slice get lost when a process moves into the next-time slice. In our setting, this
means that no summands of the formσrel(x) should get lost. In strong time factorization,
we demand that no summands at all get lost.

We give two examples. First, consider the following process P:

P ≡ a+σrel(b)+σrel(σrel(c))

When we have weak time factorization, the execution of the σrel in the second summand
of P should not lead to the disappearance of the third summand, and vice versa. So, in
weak time factorization, P should be equal to:

a+σrel(b+σrel(c))

In this way, the scope of the either one of the σrel operators at the head of a summand
of P effectively spans both σrel-summands of the process P

When we have strong time factorization, the execution of the σrel in the second or
third summand of P is not possible at all, as that would lead to the disapperance of the
first summand, a. So, in strong time factorization, P should be equal to just:

a

Due to this behavior, where a summand in the current time-slice is always chosen over
a summand that idles till the next time slice, strong time factorization is sometimes
also called maximal progress (e.g., in BAETEN AND BERGSTRA [24]). However, as maximal
progress is also often used to denote entirely different notions, we prefer to use the term
strong time factorization.

Secondly, consider the following process Q:

Q ≡ σrel(a)+σrel(σrel(b))

As this process only contains summands of the form σrel(x), the notions of weak and
strong time factorization coincide. In both settings, Q should be equal to:

σrel(a+σrel(b))

Of course there is a third alternative: no time factorization at all. All three alternatives
occur in the literature. To name examples of each: NICOLLIN AND SIFAKIS [154] adhere to
strong time factorization, BAETEN AND BERGSTRA [24] adhere to weak time factorization,
and GROOTE [87] has no time factorization at all. It is even possible to combine weak time
factorization and strong time factorization in one process algebra, by using two different
choice operators. For an example of this, see MOLLER AND TOFTS [145].

We choose to follow the weak time factorization approach, as we find strong time
factorization too restrictive, and no time factorization counterintuitive (because we feel
that the mere progress of time should not, in an invisible manner, introduce choices).
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σrel(x)+σrel(y) = σrel(x+ y) DRT1

σrel(x)·y = σrel(x·y) DRT2

Table 3.1: Additional axioms for BPA−drt–δ.

Definition 3.2.1.5 (Axioms of BPA−drt–δ)
The process algebra BPA−drt–δ is axiomatized by the axioms of BPA given in Defini-
tion 2.3.1.6 on page 8 and Axioms DRT1–DRT2 shown in Table 3.1: BPA−drt–δ = A1–A5
+ DRT1–DRT2.

☞ Axiom DRT1 expresses the weak time factorization property mentioned before: mov-
ing on to the next time-slice, when no actions are enabled, does not determine a choice.
Axiom DRT2 expresses the relative-time character of BPA−drt–δ: once a process has moved
to a following time-slice, the complete remaining part of the process has also moved on,
irrespective of the scope of the time-unit delay operator.

Definition 3.2.1.6 (Notation Regarding Semantics III)
Besides the deduction rule notations x a→ x′, x a→√, x a

3 , and x3 introduced in Defini-
tion 2.3.1.10 on page 10, we now also use x σ→ x′ to denote that x can do a σ-step (also
called σ-transition or time step) to x′ (i.e., move to the following time-slice and become
x′), and x σ3 to denote that x cannot do a σ-step.

Definition 3.2.1.7 (Semantics of BPA−drt–δ)
The semantics of BPA−drt–δ are given by the term-deduction system T(BPA−drt–δ) induced
by the deduction rules shown in Table 2.4 on page 11 and Table 3.2.

a a→√ σrel(x)
σ→ x x σ→ x′

x·y σ→ x′·y

x σ→ x′, y σ→ y′
x+ y σ→ x′ + y′

x σ→ x′, y σ
3

x+ y σ→ x′
x σ3 , y σ→ y′
x+ y σ→ y′

Table 3.2: Deduction rules for untimed actions and time-unit delay.

☞ The deduction rules for a and σrel(x) are self-evident; note thatσrel(x) can never do a
terminating step. The additional deduction rule for sequential composition is also clear:
with respect to sequential composition a σ-step behaves just like an action step.

The deduction rules for the alternative composition are less trivial. By the principle
of weak time factorization a σ-step may not determine a choice between summands of
the form σrel(x). So, if we have process terms x and y, such that x can do a σ-step to
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x′, then x+ y can only do a σ step to x′ provided y does not have the possibility to do a
σ-step. If y can do a σ-step to y′, then x + y can do a σ-step to x′ + y′, and to nothing
else.

Definition 3.2.1.8 (Bisimulation for BPA−drt–δ)
Bisimulation for BPA−drt–δ is defined as follows; a binary relation R on closed BPA−drt–δ
terms is a bisimulation if the following transfer conditions hold for all closed BPA−drt–δ
terms p and q:

(i). If RS(p,q) and T(BPA−drt–δ) î p a→ p′, where a ∈ A, then there exists a closed term
q′, such that T(BPA−drt–δ) î q a→ q′ and RS(p′, q′),

(ii). if RS(p,q) and T(BPA−drt–δ) î p σ→ p′, then there exists a closed term q′, such that
T(BPA−drt–δ) î q σ→ q′ and RS(p′, q′),

(iii). if RS(p,q) and T(BPA−drt–δ) î p a→√, where a ∈ A, then T(BPA−drt–δ) î q a→√.

Two BPA−drt–δ terms p and q are bisimilar, notation p ∼BPA−drt–δ q, if there exists a bisimula-
tion relation R such that R(p,q).

☞ Extending the definition of bisimulation to incorporate σ-steps is very straightfor-
ward: with respect to bisimulation σ-steps are treated as if they were action steps.

Remark 3.2.1.9 (Bisimulation for BPA−drt–δ)
In Definition 3.2.1.8 we can treat time transitions as if they were action transitions be-
cause we have carefully constructed T(BPA−drt–δ) in such a way that a closed term never
has more than one outgoing time transition. Therefore, weak time factorization is al-
ways assured: since no closed term ever has the choice between different time steps, time
steps never introduce non-determinism. Another option would be to treat time transi-
tions as action transitions in the deduction rules, and enforce weak time factorization by
means of the definition of bisimulation. This leads to a simpler term-deduction system,
but a more difficult definition of bisimulation. Such an approach is, for example, taken
by BERGSTRA, FOKKINK, AND MIDDELBURG [42] (see also Section 8.2.8).

Lemma 3.2.1.10 (Closures of Bisimulation Relations)
Let R ⊆ C(BPA−drt–δ) × C(BPA−drt–δ) be a bisimulation relation on closed BPA−drt–δ terms.
Then we have:

(i). RR is again a bisimulation relation on closed BPA−drt–δ terms,

(ii). RS is again a bisimulation relation on closed BPA−drt–δ terms,

(iii). RT is again a bisimulation relation on closed BPA−drt–δ terms.

Proof

(i). By the definition of reflexive closure, we have RR = R ∪ {(x, x)∣∣x ∈ C(BPA−drt–δ)
}
.

We now have to prove that the transfer conditions of Definition 3.2.1.8 hold with re-
spect to RR for all closed BPA−drt–δ terms p and q. First, for all (p,q) ∈ RR such that
(p,q) ∈ R the transfer conditions are fulfilled because R is a bisimulation relation.
Secondly, for all (p,p) ∈ RR, the transfer conditions are trivially fulfilled because p
and p can do exactly the same steps.
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(ii). Trivially fulfilled because all transfer conditions are invariant under the symmetric
closure of R.

(iii). See BASTEN [40].

�

Remark 3.2.1.11 (Closures of Bisimulation Relations)
Lemma 3.2.1.10 on the page before does not only hold in the context of bisimulation for
BPA−drt–δ, but also in the context of any other bisimulation definition in this thesis. In
each case, the proof is the same as for BPA−drt–δ.

Finally, note that the proof of Lemma 3.2.1.10(iii) is trivial in the absence of silent
actions (to be treated later, in Chapter 7), but highly non-trivial in their presence.

Definition 3.2.1.12 (Bisimulation Model for BPA−drt–δ)
The bisimulation model for BPA−drt–δ is defined in the same way as for BPA. Replace “BPA”
by “BPA−drt–δ” in Definition 2.3.1.16.

Definition 3.2.1.13 (Basic Terms of BPA−drt–δ)
We define σ-basic terms inductively as follows:

(i). For every a ∈ A, the undelayable action a is a σ-basic term,

(ii). if a ∈ A and t is a σ-basic term, then a·t is a σ-basic term,

(iii). if t and s are σ-basic terms, then t + s is a σ-basic term,

(iv). if t is a basic term, then σrel(t) is a σ-basic term.

From now on, when we speak of basic terms in the context of BPA−drt–δ, we mean σ-basic
terms.

☞ The basic terms of BPA−drt–δ are like the basic terms of BPA, with σrel added as new
constructor.

Definition 3.2.1.14 (Number of Symbols of a BPA−drt–δ Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ A, we define n(a) = 1,

(ii). for closed BPA−drt–δ terms x and y, we define n(x+ y) = n(x·y) = n(x)+ n(y)+ 1,

(iii). for a closed BPA−drt–δ term x, we define n(σrel(x)) = n(x)+ 1.

☞ We will n(x) use in induction proofs where the induction is on the number of symbols
of a closed term.
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3.2.2 BPA−drt–ID

In this section, we add an undelayable deadlock constant, denoted δ, to BPA−drt–δ. Also
we introduce the so-called “now” operator, denoted νrel. This operator is defined such
that νrel(x) denotes the part of x that can do an action within the first time-slice (no re-
strictions on later actions). The resulting process algebra is called BPA−drt–ID.

Definition 3.2.2.1 (Signature of BPA−drt–ID)
The signature of BPA−drt–ID consists of the undelayable actions {a|a ∈ A}, the undelayable
deadlock constant δ, the alternative composition operator +, the sequential composition
operator ·, the time-unit delay operator σrel, and the “now” operator νrel.

☞ Because δ is definable in terms of νrel and σrel, we could not have introduced νrel in
BPA−drt–δ.

Definition 3.2.2.2 (Axioms of BPA−drt–ID)
The process algebra BPA−drt–ID is axiomatized by the axioms of BPA−drt–δ given in Defini-
tion 3.2.1.5 on page 44, Axioms DRT3–DRT5 shown in Table 3.3, and Axioms DCS1–DCS4
shown in Table 3.4: BPA−drt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4.

δ·x = δ DRT3

a+ δ = a DRT4

σrel(x)+ δ = σrel(x) DRT5

Table 3.3: Additional axioms for BPA−drt–ID

νrel(a) = a DCS1

νrel(x+ y) = νrel(x)+ νrel(y) DCS2

νrel(x·y) = νrel(x)·y DCS3

νrel(σrel(x)) = δ DCS4

Table 3.4: Axioms for “now” operator.

☞ Axiom DRT3 is the discrete-time counterpart of Axiom A7 we already encountered
on page 14. Axioms DRT4 and DRT5 serve to ensure that for all closed terms x, we have
BPA−drt–ID ` x + δ = x. We could have made this equality an axiom itself, but then we
would have to drop it again when we introduce the immediate deadlock (see also Re-
mark 2.3.2.3 on page 14 and Remark 3.2.2.3 on the following page).

Axiom DCS1 expresses the fact that an undelayable action always starts in the cur-
rent time-slice, so the “now” operator has no effect on it. Axiom DCS2 expresses that
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the part of x + y that starts in the current time-slice consists of the alternative compo-
sition of the parts of x and y that start in the current time-slice, i.e., the “now” operator
distributes over the alternative composition. Axiom DCS3 expresses that the part of x·y
that starts in the current time-slice consists of the part of x that starts in the current
time-slice, followed by y (which need not start in the current time-slice). Axiom DCS4,
finally, expresses that σrel(x) cannot start in the current time-slice.

Remark 3.2.2.3 (DRT4 and DRT5 versus DRT4A)
Note that for closed BPA−drt–ID terms, Axioms DRT4–DRT5 shown in Table 3.3 on the page
before are equivalent with Axiom DRT4A shown in Table 3.5. Therefore we could re-
place Axioms DRT4–DRT5 in BPA−drt–ID by DRT4A without affecting the soundness or
completeness of the resulting process algebra. This is for example done in BOS AND RE-
NIERS [53].

One reason for doing so, could be the fact that DRT4A is a straightforward reformu-
lation of Axiom A6 from BPAδ, in a setting with undelayable actions. However, we prefer
Axioms DRT4–DRT5 over DRT4A because the latter does not extend to the discrete-time
process algebras with immediate deadlock we will describe later on. If we need the equal-
ity of DRT4A, we can derive it as a lemma.

x+ δ = x DRT4A

Table 3.5: Alternative axiom for undelayable deadlock.

☞ If we, for example, want to derive BPA−drt–ID ` a·b + δ = a·b, we do so as follows:
BPA−drt–ID ` a·b+ δ = a·b+ δ·b = (a+ δ)·b = a·b.

Definition 3.2.2.4 (Semantics of BPA−drt–ID)
The semantics of BPA−drt–ID are given by the term-deduction system T(BPA−drt–ID), in-
duced by the deduction rules for BPA−drt–δ given in Definition 3.2.1.7 on page 44, and
the deduction rules for νrel shown in Table 3.6.

x a→ x′
νrel(x)

a→ x′
x a→√

νrel(x)
a→√

Table 3.6: Deduction rules for “now” operator.

☞ The deduction rules for the “now” operator speak for themselves: all transitions that
x can do, can also be done by νrel(x), with the exception of σ-transitions.

Definition 3.2.2.5 (Bisimulation and Bisimulation Model for BPA−drt–ID)
Bisimulation for BPA−drt–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “BPA−drt–ID” in Def-
inition 3.2.1.8 on page 45 and “BPA” by “BPA−drt–ID” in Definition 2.3.1.16 on page 12.
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Definition 3.2.2.6 (Basic Terms of BPA−drt–ID)
We define (σ,δ)-basic terms inductively as follows:

(i). For every a ∈ Aδ, a is a (σ,δ)-basic term,

(ii). if a ∈ Aδ and t is a (σ,δ)-basic term, then a·t is a (σ,δ)-basic term,

(iii). if t and s are (σ,δ)-basic terms, then t + s is a (σ,δ)-basic term,

(iv). if t is a (σ,δ)-basic term, then σrel(t) is a (σ,δ)-basic term.

From now on, when we speak of basic terms in the context of BPA−drt–ID, we mean (σ,δ)-
basic terms.

Definition 3.2.2.7 (Summation Convention)
We will use the meta-notation

∑
i∈I ti to denote the summation over some finite index set

I = {1, . . . , n}:
∑
i∈I
ti Ö t1 + ·· · + tn

Note that due to the commutativity and associativity of the alternative composition, the
order of the summands is immaterial. The summation over the empty set yields the un-
delayable deadlock:

∑

i∈∅
ti Ö δ

Note however, that we use the convention that an empty summation disappears in the
presence of other summands. So:

s+
∑

i∈∅
ti Ö s

Here s and ti denote arbitrary closed terms.

☞ We will use the summation notation to give an alternative characterization of basic
terms.

Theorem 3.2.2.8 (General Form of Basic Terms of BPA−drt–ID)
Modulo the commutativity and associativity of the +, all basic terms t of BPA−drt–ID are of
the form:

t ≡
∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
σrel(uk)

for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms si and uk.

Proof Trivial, by inspection of the definition of basic terms, Definition 3.2.2.6. Observe
that the general form of basic terms is closed under the formation rules given in Defini-
tion 3.2.2.6. �
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☞ Some proofs by induction on basic terms do not work very well, especially when the
induction is on several variables simultaneously, leading to a unmanageable number of
case distinctions. In these cases it is sometimes easier to use induction on the number
of symbols in the general form of basic terms. For examples of such proofs, see BAETEN

AND WEIJLAND [38].

Definition 3.2.2.9 (Number of Symbols of a BPA−drt–ID Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed BPA−drt–ID terms x and y, we define n(x+y) = n(x·y) = n(x)+n(y)+1,

(iii). for a closed BPA−drt–ID term x, we define n(σrel(x)) = n(νrel(x)) = n(x)+ 1.

Lemma 3.2.2.10 (Representation of BPA−drt–ID Terms)
Let t be a basic term. Then either BPA−drt–ID ` t = νrel(t), or there exists a basic term s
such that BPA−drt–ID ` t = νrel(t)+σrel(s) and n(s) < n(t).

Proof Let t be a basic term. By Theorem 3.2.2.8, we may now proceed by case analysis
on the general form of basic terms:

(i). Either we have no σrel-summands (p = 0 in Theorem 3.2.2.8):

t ≡
∑
i<m
ai·si +

∑
j<n
bj

for m,n ∈ N, ai, bj ∈ Aδ, and basic terms si. Then we have the following computa-
tion:

BPA−drt–ID ` t =
∑

i<m
ai·si +

∑

j<n
bj

=
∑
i<m
νrel(ai)·si +

∑
j<n
νrel(bj)

=
∑
i<m
νrel(ai·si)+

∑
j<n
νrel(bj)

= νrel


∑
i<m
ai·si +

∑
j<n
bj




= νrel(t)

(ii). Or we have at least one σrel-summand (p ≥ 1 in Theorem 3.2.2.8):

t ≡
∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
σrel(uk)

for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms si and uk. Then we have the following
computation:

BPA−drt–ID ` t =
∑

i<m
ai·si +

∑

j<n
bj +

∑

k<p
σrel(uk)
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=
∑
i<m
νrel(ai)·si +

∑
j<n
νrel(bj)+

∑

k<p
σrel(uk)

=
∑
i<m
νrel(ai·si)+

∑
j<n
νrel(bj)+

∑

k<p
σrel(uk)

= νrel


∑
i<m
ai·si +

∑
j<n
bj


+σrel


∑

k<p
uk




= νrel


∑

i<m
ai·si +

∑

j<n
bj +

∑

k<p
σrel(uk)


+σrel


∑

k<p
uk




= νrel(t)+σrel(s)

Where we define:

s ≡
∑

k<p
uk

Note that n(s) < n(t) is now trivially satisfied, as for every summand uk of s, there
is a corresponding summand σrel(uk) of t, and at least one such summand exists
as p ≥ 1.

�

☞ The main use of Lemma 3.2.2.10 will be in induction proofs regarding the (not yet
treated) process algebras PA−drt–ID and ACP−drt–ID.

3.2.3 BPA−drt

In this section, we extend BPA−drt–ID with the immediate deadlock constant. The resulting
process algebra is called BPA−drt.

Definition 3.2.3.1 (Signature of BPA−drt)
The signature of BPA−drt consists of the undelayable actions {a|a ∈ A}, the undelayable
deadlock constant δ, the immediate deadlock constant δ̇, the alternative composition op-
erator +, the sequential composition operator ·, the time-unit delay operator σrel, and the
“now” operator νrel.

Definition 3.2.3.2 (Axioms of BPA−drt)
The process algebra BPA−drt is axiomatized by the axioms of BPA−drt–ID given in Defini-
tion 3.2.2.2 on page 47, Axioms A6ID–A7ID shown in Table 2.10 on page 19, and Axioms
DRTSID and DCSID shown in Table 3.7 on the next page: BPA−drt = A1–A5 + A6ID + A7ID
+ DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID.

☞ The axioms of BPA−drt are a straightforward combination of the axioms we have al-
ready encountered in BPA−drt–ID and BPAδ̇. We only need to introduce two new axioms to
define the time-unit delay and the “now” operator on the immediate deadlock. The first,
Axiom DRTSID, expresses that an immediate deadlock in the next time-slice is equiva-
lent to an undelayable deadlock in the current time-slice: we identify the end point of
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σrel(δ̇) = δ DRTSID

νrel(δ̇) = δ̇ DCSID

Table 3.7: Additional axioms for BPA−drt.

the current time-slice with the begin point of the next time-slice. The second, Axiom
DCSID, expresses that the “now” operator leaves the immediate deadlock untouched, as
the immediate deadlock cannot move to a following time-slice.

Remark 3.2.3.3 (Derivability of DRT3 and DRT5)
Note that from Axioms A6ID, DRT1, DRT2, and DRTSID we can derive Axioms DRT3 and
DRT5, as we have:

δ·x = σrel(δ̇)·x = σrel(δ̇·x) = σrel(δ̇) = δ
and, similarly:

σrel(x)+ δ = σrel(x)+σrel(δ̇) = σrel(x+ δ̇) = σrel(x)

However, we still choose to include DRT3 and DRT5 even for process algebras that do
contain δ̇, as our goal is not to find a minimal axiomatization, but instead to find a con-
venient one with regard to ease of proofs and calculations.

Earlier, in the axiomatization of PAε (see Section 2.4.3 on page 24), we chose to drop
Axiom M2 because it had become derivable. Here, we choose to maintain two derivable
axioms, Axioms DRT3 and DRT5. This difference can be explained as follows. First, in
PAε, we could derive Axiom M2 in a systematic way, namely by substituting ε for x in its
“twin axiom”. Here, the derivation is not so systematic, but more like a trick. Secondly,
as we will see in Chapters 4 and 5, maintaining Axiom M2 would lead to several annoying
proof obligations with respect to proving soundness. Proving the soundness of Axioms
DRT3 and DRT5 is much easier, as they only involve simple operators.

Concluding: we will maintain derivable axioms when the cost in additional proof obli-
gations is low, and their derivability is “accidental”. However, a derivable axiom that can
be systematically derived from the other axioms, and also has a high cost in additional
proof obligations, will be dropped as soon as possible.

Definition 3.2.3.4 (Semantics of BPA−drt)
The semantics of BPA−drt are given by the term-deduction systemT(BPA−drt) induced by the
deduction rules for BPA−drt–ID given in Definition 3.2.2.4 on page 48 minus the deduction
rule σrel(x)

σ→ x, plus the deduction rules shown in Table 3.8 on the facing page, and the
deduction rules shown in Table 3.9 on the next page.

☞ The deduction rules of Table 3.8 on the facing page are exactly the same as in the
untimed case, so we only comment on the rules of Table 3.9 on the next page.

In view of our identification of the end point of the current time-slice with the begin
point of the next time-slice, we cannot maintain the deduction rule σrel(x)

σ→ x. Other-
wise, σrel(δ̇) would be able to do a σ-step, while δ would not, and that would violate the
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ID(δ̇)
ID(x), ID(y)

ID(x+ y)
ID(x)

ID(x·y)

Table 3.8: Deduction rules for immediate-deadlock predicate.

¬ID(x)
σrel(x)

σ→ x
ID(x)

ID(νrel(x))

Table 3.9: Additional deduction rules for immediate-deadlock predicate
and discrete time.

equality expressed by Axiom DRTSID. So, we weaken it such that σrel(x) can only do a
σ-step if x is not derivably equal to immediate deadlock.

Finally, we add one new rule to define the immediate deadlock predicate on the “now”
operator: if x has immediate deadlock, it also has immediate deadlock when we restrict
ourselves to the part that starts in the current time slice.

Definition 3.2.3.5 (Bisimulation for BPA−drt)
Bisimulation for BPA−drt is defined as follows; a binary relation R on closed BPA−drt terms
is a bisimulation if the following transfer conditions hold for all closed BPA−drt terms p
and q:

(i). If RS(p,q) and T(BPA−drt) î p a→ p′, where a ∈ A, then there exists a closed term q′,
such that T(BPA−drt) î q a→ q′ and RS(p′, q′),

(ii). if RS(p,q) and T(BPA−drt) î p σ→ p′, then there exists a closed term q′, such that
T(BPA−drt) î q σ→ q′ and RS(p′, q′),

(iii). if RS(p,q) and T(BPA−drt) î p a→√, where a ∈ A, then T(BPA−drt) î q a→√,

(iv). if RS(p,q) and T(BPA−drt) î ID(p), then T(BPA−drt) î ID(q).

Two BPA−drt terms p and q are bisimilar, notation p ∼BPA−drt
q, if there exists a bisimulation

relation R such that R(p,q).

☞ Bisimulation is defined as expected: we now require the action steps, terminating
steps, time steps, and the immediate deadlock predicate all to match for related terms.

Definition 3.2.3.6 (Bisimulation Model for BPA−drt)
The bisimulation model for BPA−drt is defined in the same way as for BPA. Replace “BPA”
by “BPA−drt” in Definition 2.3.1.16 on page 12.

Definition 3.2.3.7 (Basic Terms of BPA−drt)
We define (σ,δ, δ̇)-basic terms inductively as follows:
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(i). Immediate deadlock δ̇ is a (σ,δ, δ̇)-basic term,

(ii). if a ∈ Aδ, then a is a (σ,δ, δ̇)-basic term,

(iii). if a ∈ Aδ and t is a (σ,δ, δ̇)-basic term, then a·t is a (σ,δ, δ̇)-basic term,

(iv). if t and s are (σ,δ, δ̇)-basic terms, then t + s is a (σ,δ, δ̇)-basic term,

(v). if t is a (σ,δ, δ̇)-basic term, then σrel(t) is a (σ,δ, δ̇)-basic term.

From now on, when we speak of basic terms in the context of BPA−drt, we mean (σ,δ, δ̇)-
basic terms.

Definition 3.2.3.8 (Summation Convention with Respect to Immediate Deadlock)
In a setting with immediate deadlock, we will use the convention that a summation over
the empty set yields the immediate deadlock:

∑

i∈∅
ti Ö δ̇

See Definition 3.2.2.7 on page 49 for other aspects of our summation convention.

Definition 3.2.3.9 (Number of Symbols of a BPA−drt term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(δ̇) = 1,

(ii). for a ∈ Aδ, we define n(a) = 1,

(iii). for closed BPA−drt terms x and y, we define n(x+ y) = n(x·y) = n(x)+ n(y)+ 1,

(iv). for a closed BPA−drt term x, we define n(σrel(x)) = n(νrel(x)) = n(x)+ 1.

3.2.4 BPA+drt

In this section, we extend BPA−drt with so-called delayable actions. To define delayable
actions, we introduce an auxiliary operator: the unbounded start delay operator , denoted
bxcω. Furthermore, we introduce a recursion principle: RSP(USD). The resulting process
algebra is called BPAdrt without the recursion principle, and BPA+drt with the recursion
principle.

Definition 3.2.4.1 (Signature of BPAdrt)
The signature of BPAdrt consists of the undelayable actions {a|a ∈ A}, the delayable ac-
tions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable deadlock constant δ,
the immediate deadlock constant δ̇, the alternative composition operator +, the sequen-
tial composition operator ·, the time-unit delay operator σrel, the “now” operator νrel, and
the unbounded start delay operator b cω.

Remark 3.2.4.2 (Delayable Actions)
By lowercase Roman letters from the beginning of the alphabet (a, b, c, etc.) we denote
delayable actions. These actions are delayable in the sense that they can postpone their
execution an arbitrary number of time-slices, whereas undelayable actions vanish when
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they fail to execute in the time-slice in which they are initialized. Correspondingly, we
also introduce the delayable deadlock, denoted δ, the process that can idle indefinitely,
but nothing else.

Note that the notation for delayable actions and delayable deadlock clashes with both
the notation for symbols from the alphabet A, and that for untimed actions (see Re-
mark 2.3.1.4 on page 7). In BAETEN AND BERGSTRA [21] the notation ats(a) (any time-slice
a) is used for the delayable action a. This has the advantage of avoiding the confusion
described above, but the disadvantage of cluttering up the formulae.

Remark 3.2.4.3 (Unbounded Start Delay)
The unbounded start delay of a process x, denoted bxcω, is the process that behaves as
νrel(x), except that it may delay the execution of its initial action (an initial action of
νrel(x) that is, not one of x) by an arbitrary number of time-slices.

Note that this implies that bσrel(x)cω can never do an action, as νrel(σrel(x)) cannot
do any actions. So, only being able to idle, bσrel(x)cω should be equal to δ.

Remark 3.2.4.4 (Iterated Delay)
In BAETEN AND BERGSTRA [25], BAETEN AND RENIERS [35], and KLEIJN [115] we find the it-
erated delay operator, denoted σ∗rel(x), the process that behaves as x, except that it may
delay the execution of its initial action by an arbitrary number of time-slices. There, we
have that σ∗rel(σrel(x)) can do an action, provided x can.

Which one is “better”, the unbounded start delay, or the iterated delay? Our position
is that both operators have their advantages and disadvantages; the unbounded start de-
lay being somewhat counterintuitive, but quite useful in practice, while the iterated delay
has a cleaner “look and feel” on first sight, an impression however that quickly evapo-
rates once one tries to use it. The outcome is undecided; that we use the unbounded start
delay is probably a matter of taste.

Definition 3.2.4.5 (Axioms of BPAdrt)
The process algebra BPAdrt is axiomatized by the axioms of BPA−drt given in Defini-
tion 3.2.3.2 on page 51, and Axioms ATS and USD shown in Table 3.10: BPAdrt = A1–A5
+ A6ID–A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID + ATS + USD.

a = bacω ATS

bxcω= νrel(x)+σrel(bxcω) USD

Table 3.10: Additional axioms for BPAdrt.

☞ Axiom ATS defines the delayable action a in terms of the undelayable action a and the
unbounded start delay: a is like a, but it may delay its execution for an arbitrary number
of time-slices. Axiom USD defines the unbounded start delay: bxcωcan either execute an
initial action of x (expressed by νrel(x)), or move on to the next time-slice, and continue
as itself (expressed by σrel(bxcω)).
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Definition 3.2.4.6 (Recursion Principle for BPAdrt)
Besides the axioms mentioned in Definition 3.2.4.5, the system BPA+drt also contains the
recursion principle RSP(USD) shown in Table 3.11. For more information on recursion
principles and their status with respect to axioms, see BAETEN AND WEIJLAND [38].

y = νrel(x)+σrel(y) =⇒ y = bxcω RSP(USD)

Table 3.11: Recursive specification principle for unbounded start delay.

☞ We need RSP(USD) because certain equalities cannot be derived from the axioms (for
example, BPAdrt ø ba+ bcω= bacω+bbcω), while they do hold in the bisimulation model.
RSP(USD) gives us the means to derive such equalities. As we will see later on in Chap-
ters 4 and 5, it does so very systematically: it gives us exactly all equalities that hold in
the model and that are not derivable from the axioms.

RSP(USD) is named after the recursion principle RSP (see BAETEN AND WEIJLAND [38]),
as it shares with RSP the quality that it guarantees the uniqueness of a certain pro-
cess (y = bxcω, in this case), given a definition of y in terms of itself (in this case:
y = νrel(x) + σrel(y)). Note that this has nothing to do with recursion in the sense of
defining processes by a system of recursive equations; we merely require an equality to
hold between two open process terms.

Alternatively, we could view RSP(USD) not as a recursion principle, but as a conditional
axiom: an axiom that can only be applied provided a certain condition holds. Viewed
that way, the question arises whether we could replace this conditional axiom by a finite
number of unconditional axioms. In Chapters 4 and 5 we will examine this issue, and
give the restrictions under which this is possible.

Finally, note that axioms like Axioms CF, D1, and D2 on page 29 are not conditional
axioms, but axiom schemes, as are all axioms that contain an action. The difference is that
an axiom scheme merely provides syntactic sugar to denote a finite number of equalities
(namely: zero or one for every a ∈ Aδ) between process terms, while a conditional ax-
iom may capture an infinite number of equalities between process terms that cannot be
expressed by a finite number of unconditional axioms.

Remark 3.2.4.7 (Notation BPA+drt)
By superscripting a process algebra with a “+” (e.g. BPA+drt), we indicate the presence of
the recursion principle RSP(USD). Note that in BAETEN AND BERGSTRA [23] and BAETEN

AND RENIERS [35] the notation BPAdrt + RSP(USD) is used instead of BPA+drt. We find that
notation cumbersome.

Example 3.2.4.8 (Use of RSP(USD))
Suppose we want to derive the equality bxcω+ bycω= bx+ ycω. First, we try to rewrite
bxcω+ bycω to a process term of the form νrel(. . . ) + σrel(. . . ). Consider the following
computation:

BPAdrt ` bxcω+ bycω= νrel(x)+σrel(bxcω)+ νrel(y)+σrel(bycω)
= νrel(x+ y)+σrel(bxcω+ bycω)
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Then, we can apply RSP(USD), and we obtain:

BPA+drt ` bxcω+ bycω= bx+ ycω

Definition 3.2.4.9 (Semantics of BPAdrt)
The semantics of BPAdrt are given by the term-deduction system T(BPAdrt) induced by
the deduction rules for BPA−drt given in Definition 3.2.3.4 on page 52 and the deduction
rules shown in Table 3.12.

a a→√ a σ→ a δ σ→ δ

x a→ x′
bxcω a→ x′

x a→√

bxcω a→√ bxcω σ→bxcω

Table 3.12: Deduction rules for delayable actions and unbounded start
delay.

☞ The deduction rules for delayable actions are as expected. Then deduction rules for
the unbounded start delay: first, action steps and terminating steps of x can also be per-
formed by bxcω. Secondly,σ-steps of x cannot be performed by bxcω, but bxcωcan always
perform a σ-step to itself. Finally, note that for any closed BPAdrt term x, we have that
BPA+drt ø bxcω= δ̇. So, ID(bxcω) should never hold, and hence there is no deduction rule
for it.

Definition 3.2.4.10 (Bisimulation and Bisimulation Model for BPAdrt)
Bisimulation for BPAdrt and the corresponding bisimulation model are defined in the
same way as for BPA−drt and BPA respectively. Replace “BPA−drt” by “BPAdrt” in Defini-
tion 3.2.3.5 on page 53 and “BPA” by “BPAdrt” in Definition 2.3.1.16 on page 12.

Definition 3.2.4.11 (Basic Terms of BPAdrt)
We define (σ,δ, δ, δ̇)-basic terms inductively as follows:

(i). Immediate deadlock δ̇ is a (σ,δ,δ, δ̇)-basic term,

(ii). if a ∈ Aδ, then a and a are (σ,δ,δ, δ̇)-basic terms,

(iii). if a ∈ Aδ and t is a (σ,δ, δ, δ̇)-basic term, then a·t and a·t are (σ,δ,δ, δ̇)-basic
terms,

(iv). if t and s are (σ,δ,δ, δ̇)-basic terms, then t + s is a (σ,δ,δ, δ̇)-basic term,

(v). if t is a (σ,δ,δ, δ̇)-basic term, then σrel(t) is a (σ,δ,δ, δ̇)-basic term.

From now on, if we speak of basic terms in the context of BPAdrt, we mean (σ,δ,δ, δ̇)-
basic terms.
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Theorem 3.2.4.12 (General Form of Basic Terms of BPAdrt)
Modulo the commutativity and associativity of the +, and modulo superfluous δ̇ sum-
mands, all basic terms t of BPAdrt are of the form:

t ≡
∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
σrel(vo)

for m,n,p, q, r ∈ N, ai, bj, ck, dl ∈ Aδ, and basic terms si, uk, and vo.

Proof Trivial, by inspection of the definition of basic terms, Definition 3.2.4.11 on the
preceding page. Observe that the general form of basic terms is closed under the forma-
tion rules given in Definition 3.2.4.11. �

Remark 3.2.4.13 (General Form of Basic Terms of BPAdrt)
Note that the case t = δ̇ is generated when we take m = n = p = q = r = 0. See also
Definition 3.2.3.8 on page 54.

Proposition 3.2.4.14 (Properties of BPA+drt, Part I)
For BPAdrt terms x and y, and any a ∈ Aδ, we have the following equalities:

(i). BPA+drt ` bacω= a
(ii). BPA+drt ` bx·ycω= bxcω·y
(iii). BPA+drt ` bx+ ycω= bxcω+ bycω

(iv). BPA+drt ` bσrel(x)cω= δ
(v). BPA+drt ` bδ̇cω= δ
(vi). BPAdrt ` νrel(a) = a
(vii). BPAdrt ` bxcω+ δ = bxcω

Proof

(i). Consider the following computation:

BPAdrt ` a = bacω
= νrel(a)+σrel

(bacω)

= a+σrel(a)
= a+ δ+σrel(a)
= νrel(a)+ νrel

(
σrel

(bacω))+σrel(a)
= νrel

(
a+σrel

(bacω))+σrel(a)
= νrel

(
νrel(a)+σrel

(bacω))+σrel(a)
= νrel

(bacω)+σrel(a)
= νrel(a)+σrel(a)

Using RSP(USD), we obtain:

BPA+drt ` a = bacω
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(ii). Consider the following computation:

BPAdrt ` bxcω·y = (νrel(x)+σrel(bxcω))·y
= νrel(x)·y+σrel(bxcω)·y
= νrel(x·y)+σrel(bxcω·y)

Using RSP(USD) (with x instantiated by x·y and y by bxcω·y), we obtain:

BPA+drt ` bxcω·y = bx·ycω

(iii). Consider the following computation:

BPAdrt ` bxcω+ bycω= νrel(x)+σrel(bxcω)+ νrel(y)+σrel(bycω)
= νrel(x+ y)+σrel(bxcω+ bycω)

Using RSP(USD), we obtain:

BPA+drt ` bxcω+ bycω= bx+ ycω

(iv). Consider the following computation:

BPAdrt ` δ = bδcω
= νrel(δ)+σrel

(bδcω)

= δ+σrel
(bδcω)

= σrel(δ)
= νrel(σrel(x))+σrel(δ)

Using RSP(USD), we obtain:

BPA+drt ` δ = bσrel(x)cω

(v). Consider the following computation:

BPAdrt ` δ = bδcω
= νrel(δ)+σrel(bδcω)
= δ+σrel(δ)
= σrel(δ)
= δ̇+σrel(δ)
= νrel(δ̇)+σrel(δ)

Using RSP(USD) we obtain:

BPA+drt ` δ = bδ̇cω
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(vi). Consider the following computation:

BPAdrt ` νrel(a) = νrel(bacω)
= νrel

(
νrel(a)+σrel

(bacω))

= νrel(a+σrel(a))
= νrel(a)+ νrel(σrel(a))
= a+ δ
= a

So we obtain:

BPAdrt ` νrel(a) = a

(vii). Consider the following computation:

BPAdrt ` bxcω+ δ = νrel(x)+σrel(bxcω)+ δ = νrel(x)+σrel(bxcω) = bxcω

Note the use of Axiom DRT5 in the second step.

�

Remark 3.2.4.15 (Properties of BPA+drt, Part I)
The equalities of Proposition 3.2.4.14 on page 58 are not new, but have been described
before, see for example NICOLLIN AND SIFAKIS [154].

Proposition 3.2.4.16 (Properties of BPA+drt, Part II)
For any BPAdrt term x we have the following equality:

BPA+drt ` δ·x = δ

Proof Using Proposition 3.2.4.14(ii) we derive:

BPA+drt ` δ·x = bδcω·x = bδ·xcω= bδcω= δ

�

☞ The properties of Propositions 3.2.4.14 and 3.2.4.16 are all derivable equalities in-
volving delayable actions or the unbounded start delay. We could have given these as
axioms, but we try to avoid such axioms wherever possible, as by means of RSP(USD) all
such equalities should follow from the “undelayable axioms”. In this way, at the cost
of introducing a recursion principle, we gain a substantial reduction in the size of the
axiomatization, in a systematic way.

Definition 3.2.4.17 (Number of Symbols of a BPAdrt term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(δ̇) = 1,

(ii). for a ∈ Aδ, we define n(a) = n(a) = 1,



3.2 • Basic Process Algebras 61

(iii). for closed BPAdrt terms x and y, we define n(x+ y) = n(x·y) = n(x)+ n(y)+ 1,

(iv). for a closed BPAdrt term x, we define n(σrel(x)) = n(νrel(x)) = n(bxcω) = n(x)+1.

Lemma 3.2.4.18 (Representation of BPA+drt Terms)
Let t be a basic term. Then either:

(i). BPA+drt ` t = δ̇, or,

(ii). BPA+drt ` t = νrel(t)+ δ, or,

(iii). BPA+drt ` t = btcω, or,

(iv). there exists a basic term s such that BPA+drt ` t = νrel(t)+σrel(s) and n(s) < n(t).

Proof Let t be a basic term. By Theorem 3.2.2.8, we may now proceed by case analy-
sis on the form of basic terms. Suppose, by Theorem 3.2.4.12, that t has the following
general form:

t ≡
∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
σrel(vo)

for m,n,p, q, r ∈ N, ai, bj, ck, dl ∈ Aδ, and basic terms si, ul, and vo. We distinguish four
cases:

(i). There are no summands: p = q =m = n = r = 0.

(ii). Every, and at least one, summand starts with an undelayable action: m+n ≥ 1 and
p = q = r = 0.

(iii). Every, and at least one, summand starts with a delayable action: p + q ≥ 1 and
m = n = r = 0.

(iv). Neither of the above; there are both summands that start with delayable action and
ones the start with undelayable actions, or there are summands that start with the
time-unit delay operator: p+ q+ r ≥ 1 and m+ n+ r ≥ 1

As can be easily seen, this covers all cases. We now prove that the four cases we distin-
guish correspond to the four cases in the formulation of the theorem:

(i). We have p = q =m = n = r = 0. So, by Definition 3.2.3.8, t ≡ δ̇ and BPA+drt ` t = δ̇.

(ii). We havem+ n ≥ 1 and p = q = r = 0. So:

t ≡
∑
i<m
ai·si +

∑
j<n
bj

for m,n ∈ N, ai, bj ∈ Aδ, and basic terms si. Then we have the following computa-
tion:

BPA+drt ` t =
∑
i<m
ai·si +

∑
j<n
bj =

∑
i<m
νrel(ai)·si +

∑
j<n
νrel(bj)

=
∑

i<m
νrel(ai·si)+

∑

j<n
νrel(bj) = νrel


∑

i<m
ai·si +

∑

j<n
bj
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= νrel


∑
i<m
ai·si +

∑
j<n
(bj + δ)


 = νrel


∑
i<m
ai·si +

∑
j<n
bj + δ




= νrel(t + δ) = νrel(t)+ νrel(δ) = νrel(t)+ δ

(iii). We have p+ q ≥ 1 and m = n = r = 0. So:

t ≡
∑

k<p
ck·uk +

∑

l<q
dl

for p,q ∈ N, ck, dl ∈ Aδ, and basic terms uk. Using Proposition 3.2.4.14(i)–(iii) we
then have the following computation:

BPA+drt ` t =
∑

k<p
ck·uk +

∑

l<q
dl =

∑

k<p
bckcω·uk +

∑

l<q
bdlcω

=
∑

k<p
bck·ukcω+

∑

l<q
bdlcω=

∑

k<p
ck·uk +

∑

l<q
dl


ω

= btcω

(iv). We have p+ q+ r ≥ 1 and m+ n+ r ≥ 1. So:

t ≡
∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
σrel(vo)

for m,n,p, q, r ∈ N, ai, bj, ck, dl ∈ Aδ, and basic terms si, ul, and vo. Then we have
the following computation:

BPA+drt ` t =
∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
σrel(vo)

=
∑
i<m
νrel(ai)·si +

∑
j<n
νrel(bj)+

∑

k<p
bckcω·uk +

∑

l<q
bdlcω+

∑
o<r
σrel(vo)

=
∑
i<m
νrel(ai·si)+

∑
j<n
νrel(bj)+

∑

k<p
(νrel(ck)+σrel(bckcω))·uk +

∑

l<q
(νrel(dl)+σrel(bdlcω))+

∑
o<r
σrel(vo)

=
∑
i<m
νrel(ai·si)+

∑
j<n
νrel(bj)+

∑

k<p
(νrel(ck)+σrel(ck))·uk +

∑

l<q
(νrel(dl)+σrel(dl))+

∑
o<r
σrel(vo)

=
∑

i<m
νrel(ai·si)+

∑

j<n
νrel(bj)+
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∑

k<p
(νrel(ck)·uk +σrel(ck)·uk)+

∑

l<q
(νrel(dl)+σrel(dl))+

∑
o<r
σrel(vo)

=
∑
i<m
νrel(ai·si)+

∑
j<n
νrel(bj)+

∑

k<p
(νrel(ck·uk)+σrel(ck·uk))+

∑

l<q
(νrel(dl)+σrel(dl))+

∑
o<r
σrel(vo)

= νrel


∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
ck·uk +

∑

l<q
dl


+

σrel


∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
vo




= νrel


∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
(ck·uk +σrel(bckcω)·uk)+

∑

l<q
(dl +σrel(bdlcω))+

∑
o<r
σrel(vo)

)
+

σrel


∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
vo




= νrel


∑

i<m
ai·si +

∑

j<n
bj +

∑

k<p
(ck +σrel(bckcω))·uk +

∑

l<q
(dl +σrel(bdlcω))+

∑
o<r
σrel(vo)

)
+

σrel


∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
vo




= νrel


∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
bckcω·uk +

∑

l<q
bdlcω+

∑
o<r
σrel(vo)


+

σrel


∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
vo
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= νrel


∑
i<m
ai·si +

∑
j<n
bj +

∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
σrel(vo)


+

σrel


∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
vo




= νrel(t)+σrel(s)

Where we define:

s ≡
∑

k<p
ck·uk +

∑

l<q
dl +

∑
o<r
vo

Note that n(s) < n(t) is now trivially satisfied: every summand of s also appears as
a subterm of t, and bym+n+ r ≥ 1, t must contain summands that do not appear
in s. Therefore, t must contain at least 2 more symbols than s.

�

Lemma 3.2.4.19 (Simplified Representation of BPA+drt Terms)
Let t be a basic term. Then either:

(i). BPA+drt ` t = δ̇, or,

(ii). BPA+drt ` t = t + δ.

Proof This lemma follows almost immediately from Lemma 3.2.4.18; case (i) mentioned
there corresponds to case (i) here, and cases (ii)–(iv) mentioned there correspond to case
(ii) here. We distinguish the four cases from Lemma 3.2.4.18:

(i). BPA+drt ` t = δ̇.

(ii). BPA+drt ` t = νrel(t)+ δ. Then we have, using Axiom A3:

BPA+drt ` t = νrel(t)+ δ = νrel(t)+ δ+ δ = t+ δ

(iii). BPA+drt ` t = btcω. Then we have, using Proposition 3.2.4.14(vii):

BPA+drt ` t = btcω= btcω+ δ = t+ δ

(iv). BPA+drt ` t = νrel(t)+σrel(s). Then we have, using Axiom DRT5:

BPA+drt ` t = νrel(t)+σrel(s) = νrel(t)+σrel(s)+ δ = t + δ

�

☞ The main use of Lemmata 3.2.4.18 and 3.2.4.19 will be in induction proofs regarding
the (yet to be treated) process algebras PA+drt and ACP+drt.
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3.3 Properties

In this section, we list an important property that is desirable in a discrete-time process
algebra, and give the process algebras that have this property. We give a formal defini-
tion, and an intuitive justification why this property is desirable. Furthermore, we give
the embeddings between the discrete-time process algebras treated in this chapter. Elim-
ination, soundness, and completeness properties will be treated in Chapter 4.

Property 3.3.1.1 (Time Determinism)
Given a discrete-time process algebra P and a corresponding term-deduction system
T(P), we say that T(P) has the time-determinism property if for all closed terms x, y,
and y′ of P we have that:

T(P) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

This property holds for all process algebras described in this chapter.

☞ The time determinism property is quite closely related to time factorization (see Re-
mark 3.2.1.4 on page 42): both state that the progress of time should only influence the
state of a process in a limited way. Both weak and strong time factorization are sufficient
conditions to ensure time determinism. For every process algebra P that contains time-
factorization axioms, the term-deduction system T(P) should exhibit time determinism,
lest the corresponding bisimulation model be not sound.

Remark 3.3.1.2 (Embeddings)
The following embeddings hold between the process algebras given in this chapter, and
between the and the untimed process algebras:

(i). BPA ⊆ BPA−drt–δ

(ii). BPAδ ⊆ BPA−drt–ID

(iii). BPAδ̇ ⊆ BPA−drt

(iv). BPAδ̇ ⊆ BPA+drt

(v). BPA−drt–δ ⊆ BPA−drt–ID ⊆ BPA−drt ⊆ BPAdrt ⊆ BPA+drt

Embedding (i) is achieved by projecting the untimed process a onto the undelayable pro-
cess a for a ∈ A, and everything else onto itself. Embeddings (ii) and (iii) are achieved
like embedding (i), but now for a ∈ Aδ. The embeddings of (v) are achieved by projecting
everything onto itself.

Embedding (iv) is special, as it can be achieved in two different ways: either by pro-
jecting the untimed process a onto the undelayable process a for a ∈ Aδ, and everything
else onto itself, or by projecting the untimed process a onto the delayable process a for
a ∈ Aδ, and everything else onto itself. In the first way, BPAδ is projected onto the first
time-slice of BPA+drt. In the second way, BPAδ is projected onto the entire time domain.





4
Soundness and Completeness

4.1 Introduction

In this chapter we will give elimination, soundness, and completeness results for several
discrete-time process algebras. We restrict ourselves to concrete process algebras (i.e.
without a silent action τ, and without the empty process ε), relative time, closed terms
(for open terms, i.e. for ω-completeness, see GROOTE [86]), and basic process algebras.
We do treat delayable actions and immediate deadlock.

With the recent appearance of BAETEN AND BERGSTRA [24, 25], BAETEN AND VERHOEF

[37], and BAETEN AND RENIERS [35], discrete-time process algebra has reached a decent
state of maturity. To be more precise: a stable enough state to justify a detailed anal-
ysis of the soundness and completeness issues involved with it. To our knowledge, no
such results have been published in the context of discrete-time process algebra before.
And although we never really doubted the soundness and completeness of the respective
process algebra, we felt that it would not hurt to prove these beliefs explicitly. Rightly
so: it turned out that the axiomatizations we started out with were neither sound nor
complete.

4.2 Techniques

In this section we will give a short overview of the proof techniques we will use to prove
elimination, soundness, and completeness. For each, we briefly list the proof outlines we
will use, and then describe these outlines in some detail. The proof outlines we give in
this section will be used several times in this and later chapters.

4.2.1 Proving Elimination

To prove elimination to basic terms (Property 2.6.1.5 on page 36) for a process algebra
P, we must show that for any closed term s of P, there exists a basic term t such that
P ` s = t. To do this, we apply two different techniques:

(i). Term-rewriting analysis using the lexicographical path ordering method,

67
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(ii). the direct method.

Proof Outline 4.2.1.1 (Elimination: Lexicographical Path Ordering)
Given a process algebra P, we can associate a term-rewriting system T with it such that
every reduction path in T corresponds to a derivation in P. If we now also carefully con-
struct T such that it is strongly terminating, and its normal forms are contained in the
basic terms of P, then we have a reduction from every closed term s to a basic term t.
Since this reduction corresponds to a derivation in P, we have proved elimination.

There are two crucial steps in this method: first, we have to construct a T with the
desired properties, and secondly, we have to prove that T does indeed have these prop-
erties.

The first step is usually done by turning a select number of axioms into term-rewriting
rules by giving them a direction. The requirement that every reduction in T corresponds
to a derivation in P is then trivially fulfilled, as every reduction step now corresponds to
an application of the corresponding axiom. Strong termination is mostly also fulfilled,
although this is not trivial at all. At the least, we have to be careful to avoid axioms like
Axiom A1, which would, when turned into term-rewriting rules, lead to a non strongly ter-
minatingT. At this point, we may already have a suitable strongly-terminatingT, namely,
one whose normal forms are basic terms of P. If this is not the case, we need to introduce
additional rewriting rules. To ensure that every reduction path of T still corresponds to
a derivation of P, we must ensure that the additional rewriting rules each correspond to
a derivable equality in P, which must be separately proven.

Now the second step. Once we have constructed T, we must prove it is strongly ter-
minating, and prove that its normal forms are basic terms of P. We prove strong termi-
nation using the so-called lexicographical path ordering technique, the details of which
are far beyond the scope of this thesis. See, for example, KLOP [116] for more informa-
tion. Finally, the fact that the normal forms of T are indeed basic terms of P, is proven
by showing that for every closed term s of P, either s is a basic term of P, or not a normal
form of T.

☞ This proof outline is taken from BAETEN AND VERHOEF [37]. We will first use it in the
proof of Theorem 4.3.1.2 on page 72.

Proof Outline 4.2.1.2 (Elimination: Direct Method)
For some process algebras, the method outlined in Proof Outline 4.2.1.1 does not work,
as the term-rewriting system we arrive at is either not strongly terminating, or does not
have basic terms as normal forms, and the term-rewriting system remains so no matter
how many additional rewriting rules we add. In these cases, we apply a direct method:
we simply prove that for all closed terms elimination can be achieved by examining all
possible cases using induction.

To do this, we first prove elimination to a Basic Process Algebra P. Elimination to basic
terms then follows then as a corollary, on the basis of an already known elimination (to
basic terms) result for P.

Although conceptually simple, this method often gives rise to very lengthy proofs,
exponentially so for process algebras that contain many features.

☞ We will first use this proof outline in the proof of Theorem 5.2.1.7 on page 107.
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4.2.2 Proving Soundness

To prove soundness (Property 2.6.1.7 on page 36) for a process algebra P with respect to
its bisimulation model M, we must show that for all closed terms s and t of P such that
P ` s = t, we also have M î s ∼P t. To do this, we apply three different techniques:

(i). The direct method,

(ii). the indirect method,

(iii). the ground equivalence method.

Proof Outline 4.2.2.1 (Soundness: Direct Method)
To prove soundness, it is sufficient to prove that each axiom is sound, i.e., prove that for
all closed instantiations of the axiom, both sides of the axiom correspond to the same
element of the bisimulation model.

Let P be a process algebra. To prove the soundness of a certain axiom of P of the
general form:

tl(x1, . . . , xn) = tr(x1, . . . , xn)

where tl and tr are process terms in the free variables x1, . . . , xn for some n ∈ N, with
respect to the bisimulation model of P, we proceed as follows. First, we give a relation
R, which will be a binary relation on closed terms. Then, we show that this R is a bisim-
ulation relation that for all closed instantiations of x1, . . . , xn relates the left-hand and
right-hand side of the axiom. This involves two steps:

(i). R should relate both sides of the axiom for all closed terms, i.e., for all closed in-
stantiations of x1, . . . , xn we should have that

(tl(x1, . . . , xn), tr(x1, . . . , xn)) ∈ R.

This is mostly so trivial that we do not mention it at all.

(ii). R should be a bisimulation. In order to prove that, we show that for all closed terms
s and t such that R(s, t), the transfer conditions from the definition of bisimulation
are satisfied.

For example, in proving soundness of an axiom of BPA−drt–δ, we have to show that
for all closed terms s and t such that (s, t) ∈ R, we have that for any transition s u→ s′
(where u ∈ Aσ), there is a corresponding transition t u→ t′ such that (s′, t′) ∈ R,
and vice versa, for any transition t u→ t′, there is a corresponding transition s u→ s′
such that again (s′, t′) ∈ R. This part of the proof is done using case distinction
on the different kinds of steps that are possible (an action step, a time step, or a
terminating step).

Note that the “vice versa” part of proof obligation (ii) results from the fact that the trans-
fer conditions for bisimulation (see for example Definition 3.2.1.8 on page 45) are defined
with respect to the symmetric closure of R.

☞ This proof outline is taken from BAETEN AND VERHOEF [37]. We will first use it in the
proof of Theorem 4.3.1.4 on page 73.
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Proof Outline 4.2.2.2 (Soundness: Indirect Method)
Next to proving soundness directly, in the manner of Proof Outline 4.2.2.1 on the page
before, we can also prove soundness indirectly, by deriving it from the soundness of a
related process algebra. Suppose we have a process algebra P that is sound with respect
to its bisimulation model M. We now construct a process algebra P′ over the same sig-
nature, such that all axioms of P′ are for closed terms derivable in P. Since all axioms
of P were sound with respect toM, necessarily all axioms of P′ must also be sound with
respect to M. Hence, P′ is a sound axiomatization of M.

☞ We will first use this proof outline in the proof of Corollary 4.3.5.4 on page 103.

Proof Outline 4.2.2.3 (Soundness: Ground-Equivalence Method)
Suppose we have two process algebras P and P′ with identical signatures, such that P
and P′ define the same derivable equalities for closed terms. So, for all closed terms s
and t over the signature, we have P ` s = t iff P′ ` s = t. Such P and P′ are said to
be axiom ground equivalent. Furthermore, suppose that the same equalities also hold in
the bisimulation models M and M′ of P and P′, i.e., for all closed terms s and t over the
signature, we have s ∼P t iff s ∼P′ t. Then, P and P′ are also called term-deduction system
ground equivalent.

If we now have that P is sound and complete with respect to M, then necessarily P′
must also be sound and complete with respect to M′.

Note that this outline is a special case of Proof Outline 4.2.2.2. Its added value lies
in the fact that if we have P, P′, M, and M′ as described above, we can derive both the
soundness and completeness of P′ with respect to M′ at once.

☞ We will first use this proof outline in the proof of Corollary 5.2.2.17 on page 120.

4.2.3 Proving Completeness

To prove completeness (Property 2.6.1.9 on page 37) for a process algebra P with respect
to its bisimulation modelM, we must show that for all closed terms s and t of P such that
M î s ∼P t, we also have P ` s = t. To do this, we apply four different techniques:

(i). The direct method,

(ii). the indirect method,

(iii). the ground equivalence method,

(iv). Verhoef’s method.

Proof Outline 4.2.3.1 (Completeness: Direct Method)
Given a process algebra P, we first derive a lemma “Towards Completeness of P” that
contains sublemmata of the general form:

M î . . . =⇒ P ` . . .

Typically, each sublemma relates a certain transition in T(P) with a certain equality in P
(some sublemmata deviate slightly from this format).
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Armed with the implications proven in the lemma, we then set out to actually prove
completeness. This is done by proving that for all closed terms s and t of P we have that:

M î s ∼P t =⇒ P ` s = t
As we will show later, in Lemma 4.3.1.6 on page 76, a sufficient condition for this is that
for all closed terms s and t of P we have that:

M î s+ t ∼P t =⇒ P ` s+ t = t
The last implication is proven by induction on the number of symbols in s, using case
distinction on the form of s, which we may assume to be a basic term if P has the elimi-
nation property. The “Towards . . . ” sublemmata are chosen in such a way that each case
we encounter in completing our proof is now easily handled.

☞ This proof outline is taken from BAETEN AND VERHOEF [37]. We will first use it in the
proof of Theorem 4.3.1.8 on page 78.

Proof Outline 4.2.3.2 (Completeness: Indirect Method)
Next to proving completeness directly, in the manner of Proof Outline 4.2.3.1 on the pre-
ceding page, we can also prove completeness indirectly, by deriving it from the complete-
ness of a related process algebra. Suppose we have a process algebra P that is complete
with respect to its bisimulation modelM. We now construct a process algebra P′ over the
same signature, such that all derivable equalities of P that are used in the completeness
proof of P, are axioms of P′. In this way, the completeness proof for P is also a valid
completeness proof of P′, as all assumptions about derivability in P that the proof uses,
are also valid in P′. Hence, P′ is complete with respect to M. Finally, note that although
P′ is complete with respect to M, it need not be sound with respect to M.

☞ We will first use this proof outline in the proof of Corollary 4.3.5.5 on page 103.

Proof Outline 4.2.3.3 (Completeness: Ground-Equivalence Method)
Proving completeness using ground-equivalence method is done simultaneously with
proving soundness, see Proof Outline 4.2.2.3 on the preceding page for details.

☞ We will first use this proof outline in the proof of Corollary 5.2.2.19 on page 121.

Proof Outline 4.2.3.4 (Completeness: Verhoef’s Method)
Instead of using one of the previous three proof outlines to prove completeness, we can
also use the General Completeness Theorem of VERHOEF [195].

In order to apply this theorem to prove the completeness of a process algebra P with
respect to its bisimulation model M, we need a process algebra P′ such that P is a con-
servative extension of P′. Furthermore, for every closed term s of P, there should be a
closed term t of P′ such that P ` s = t (sometimes expressed as: P has the elimination
property for P′).

If we now have that P′ is complete with respect to its bisimulation model M′, P is
sound with respect to M, and T(P) is an operationally conservative extension of T(P′),
then by Verhoef’s General Completeness Theorem, P is also complete with respect toM.

For further details of this method, and a definition of conservativity with respect to
term-deduction systems, see [195].

☞ We will first use this proof outline in the proof of 5.2.1.14 on page 112.
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4.3 Results

In this section, we will prove soundness and completeness results for the discrete-time
process algebras we introduced in Section 3.2, BPA−drt–δ, BPA−drt–ID, BPA−drt, and BPA+drt,
and for one new one, BPA′drt, a variation on BPA+drt.

4.3.1 BPA−drt–δ

We start by proving elimination, soundness, and completeness for BPA−drt–δ.

Remark 4.3.1.1 (Shorthand for Time-Unit Delay Operator)
The relative time time-unit delay operatorσrel(x)we introduced in Chapter 3 has an abso-
lute time counterpart σabs(x) (BAETEN AND BERGSTRA [24]), which is why the rel subscript
is needed to distinguish between the two.

However, as absolute time plays no rôle in this thesis, we will often allow ourselves
to write σ(x) as a shorthand for σrel(x). In axioms and deduction rules we will still write
the unabbreviated σrel(x) form, as to make a comparison with, for example, the axioms
of BAETEN AND BERGSTRA [24] not too confusing. A similar convention holds with respect
to the “now” operator νrel(x), which we will often replace by the shorthand ν(x).

Theorem 4.3.1.2 (Elimination for BPA−drt–δ)
Let t be a closed BPA−drt–δ term. Then there is a basic term s such that BPA−drt–δ ` s = t.

Proof We use the lexicographical path ordering method we described in Proof Out-
line 4.2.1.1 on page 68. We select Axioms A4, A5, and DRT2 of BPA−drt–δ to be turned
into the term-rewriting system for BPA−drt–δ shown in Table 4.1. The well-founded or-

(x+ y)·z→ x·z+ y·z RA4

(x·y)·z→ x·(y·z) RA5

σ(x)·y→ σ(x·y) RDRT2

Table 4.1: Term-Rewriting System for BPA−drt–δ.

dering > on constants and function symbols is the following:

a < σ < + <·

To ·we assign the lexicographical status for the first argument. Now we show that the
left-hand side of every rewriting rule is bigger than the right-hand side with respect to the
ordering �lpo . This is done by the following reductions (taken from BAETEN AND VERHOEF

[37]):

(x+ y)·z�lpo (x+ y)·?z�lpo (x+ y)·?z+ (x+ y)·?z�lpo (x+? y)·z+ (x+? y)·z
�lpo x·z+ y·z
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(x·y)·z�lpo (x·y)·?z�lpo (x·?y)·((x·y)·?z)�lpo x·((x·?y)·z)
�lpo x·(y·z)

σ(x)·y�lpo σ(x)·?y �lpo σ(σ(x)·?y)�lpo σ(σ?(x)·y)
�lpo σ(x·y)

Next, we will prove that the closed normal forms of this term-rewriting system are basic
terms. Suppose that s is a normal form, furthermore, suppose that s is not a basic term.
Let s′ denote the smallest subterm of swhich is not a basic term. Note that, consequently,
all proper subterms of s′ are basic terms. Then we can prove that s′ is not a normal form
by case analysis. We distinguish all possible cases:

(i). s′ is an undelayable action. But then s′ is a basic term. This is in contradiction with
the assumption that s′ is not a basic term, so this case does not occur.

(ii). s′ is of the form s′1·s′2 for basic terms s′1 and s′2. With case analysis on the structure
of basic term s′1:

(a) If s′1 is an undelayable action a then s′1·s′2 is a basic term, and so s′ is a basic
term which again contradicts the assumption that s′ is not a basic term. This
case can therefore not occur.

(b) If s′1 is of the form a·t for some undelayable action a and basic term t, then
rewriting rule RA5 can be applied. So, s′ is not a normal form.

(c) If s′1 is of the form t1+ t2 for t1 and t2 basic terms. Then rewriting rule RA4 is
applicable. Therefore, s′ is not a normal form.

(d) If s′1 is of the form σ(t) for some basic term t. Then rewriting rule RDRT2 is
applicable. So, s′ is not a normal form.

(iii). s′ is of the form s′1 + s′2 for basic terms s′1 and s′2. In this case s′ would be a basic
term, which contradicts the assumption that s′ is not a basic term. Therefore, this
case cannot occur.

(iv). s′ is of the form σ(s′′) for some basic term s′′. But then s′ is basic term too, so the
case does not occur.

In any case that can occur it follows that s′ is not a normal form. Since s′ is a subterm of
s, we conclude that s is not a normal form. This contradicts the assumption that s is a
normal form. From this contradiction we conclude that s is a basic term, which completes
the proof. �

Remark 4.3.1.3 (Elimination for BPA−drt–δ)
Elimination for BPA−drt–δ is also claimed (without proof) in Theorem 2.12.3 of BAETEN AND

VERHOEF [37] (where BPA−drt–δ is called BPAdt).

Theorem 4.3.1.4 (Soundness of BPA−drt–δ)
The set of closed BPA−drt–δ terms modulo bisimulation equivalence is a model of BPA−drt–δ.

Proof We use the direct method described in Proof Outline 4.2.2.1 on page 69. Since
bisimulation equivalence is a congruence, also for the new operators, we only need to
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verify the soundness of every closed instantiation of the axioms. We do this by giving a
relation R for every axiom and we prove that this relation is a bisimulation relation for
every closed instantiation of the left-hand and right-hand sides of the axiom.

In the setting of BPA soundness of Axioms A1–A5 has already been proven (see for
example Theorem 2.2.33 of BAETEN AND VERHOEF [37]).

The process algebra BPA−drt–δ adds to this the possibility to perform σ-transitions.
However, any term headed by the time-unit delay operator added to BPA is not capable
of performing an action step. So, we argue that the left-hand side and the right-hand
side of Axioms A1–A5 can perform exactly the same action steps in BPA−drt–δ as in BPA.
Therefore, we only consider the transitions labeled by σ for Axioms A1–A5. For Axioms
DRT1–DRT2 we, of course, have to consider both the action steps and the time steps.

Finally, note that BPA−drt–δ contains undelayable actions of the form a whereas BPA
had untimed actions of the form a. This is however not relevant for the purpose of ex-
tending the soundness proofs of Axioms A1–A5 from BPA to BPA−drt–δ, as neither a nor a
appears in Axioms A1–A5, and both have exactly the same deduction rules (see Table 2.3
on page 10 and Table 3.2 on page 44).

Axiom A1 Take the relation:

R = {(s, s), (s+ t, t+ s)∣∣s, t ∈ C(BPA−drt–δ)
}

First we look at the transitions of the left-hand side. Suppose s + t σ→ p. Then one
of the following situations occurs:

(i). s σ→ p and t σ3 : then also t + s σ→ p, and note that (p,p) ∈ R.

(ii). s σ3 and t σ→ p: then also t + s σ→ p, and note that (p,p) ∈ R.

(iii). s σ→ p1 and t σ→ p2 and p ≡ p1 + p2: then t + s σ→ p2 + p1, and note that (p1 +
p2, p2 + p1) ∈ R.

The proof for the right-hand side is analogous.

Axiom A2 Take the relation:

R = {(s, s), ((s+ t)+ u, s+ (t+ u))∣∣s, t, u ∈ C(BPA−drt–δ)
}

First we look at the transitions of the left-hand side. Suppose (s+ t)+u σ→ p. Then
one of the following situations occurs:

(i). s + t σ→ p and u σ
3 : then the transition s + t σ→ p must be due to one of the

following:

(a) s σ→ p and t σ3 : in that case s σ→ p and t+u σ
3 . So, s+(t+u) σ→ p, and note

that (p,p) ∈ R.

(b) s σ3 and t σ→ p: in that case s σ3 and t + u σ→ p. Therefore, s+ (t + u) σ→ p.

(c) s σ→ p1 and t σ→ p2 and p ≡ p1+p2: in that case s σ→ p1 and t+u σ→ p2. There-
fore, s+ (t+ u) σ→ p1 + p2, and note that (p,p) ∈ R.

(ii). s+ t σ3 and u σ→ p: then s σ3 , t σ3 , and u σ→ p. So, s σ3 and t+u σ→ p. Therefore,
s+ (t+ u) σ→ p, and note that (p,p) ∈ R.
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(iii). s + t σ→ p1 and u σ→ p2 and p ≡ p1 + p2: then the transition s + t σ→ p1 must be
due to one of the following:

(a) s σ→ p1 and t σ3 : in that case s σ→ p1 and t+u σ→ p2. So, s+(t+u) σ→ p1+p2,
and note that (p,p) ∈ R.

(b) s σ3 and t σ→ p1: in that case s σ3 and t + u σ→ p1 + p2. Therefore, s + (t +
u) σ→ p1 + p2, and note that (p,p) ∈ R.

(c) s σ→ q1 and t σ→ q2 and p1 ≡ q1+q2: in that case s σ→ q1 and t+u σ→ q2+p2.
Therefore, s+ (t+u) σ→ q1+ (q2+p2), and note that ((q1+q2)+p2, q1+
(q2 + p2)) ∈ R.

The proof for the right-hand side is analogous.

Axiom A3 Take the relation:

R = {(s, s), (s+ s, s)∣∣s ∈ C(BPA−drt–δ)
}

First we look at the transitions of the left-hand side. Suppose s+s σ→ p. Then s σ→ p′
and p ≡ p′ + p′. Then s σ→ p′, and note that (p′ + p′, p′) ∈ R.

The proof for the right-hand side is analogous.

Axiom A4 Take the relation:

R = {(s, s), ((s+ t)·u,s·u+ t·u)∣∣s, t, u ∈ C(BPA−drt–δ)
}

First we look at the transitions of the left-hand side. Suppose (s+ t)·u σ→ p. Then
s+t σ→ p′ and p ≡ p′·u. The transition s+t σ→ p′ must be due to one of the following:

(i). s σ→ p′ and t σ3 : then s·u+ t·u σ→ p′·u, and note that (p,p) ∈ R.

(ii). s σ3 and t σ→ p′: analogous to the previous case.

(iii). s σ→ p1 and t σ→ p2 and p′ ≡ p1+p2: then s·u+ t·u σ→ p1·u+p2·u, and note that
((p1 + p2)·u,p1·u+ p2·u) ∈ R.

Secondly, we look at the transitions of the right-hand side. Suppose s·u+ t·u σ→ p.
This must be due to one of the following:

(i). s·u σ→ p and t·u σ
3 : then s σ→ p′ and p ≡ p′·u. Also t σ3 . Therefore, (s+ t) σ→ p′

and (s+ t)·u σ→ p′·u, and note that (p,p) ∈ R.

(ii). s·u σ
3 and t·u σ→ p: analogous to the previous case.

(iii). s·u σ→ p1 and t·u σ→ p2 and p ≡ p1 + p2: then s σ→ q1 and p1 ≡ q1·u and t σ→ q2

and p2 ≡ q2·u. Therefore, (s+ t) σ→ q1 + q2 and (s+ t)·u σ→ (q1 + q2)·u, and
note that ((q1 + q2)·u,q1·u+ q2·u) ∈ R.

Axiom A5 Take the relation:

R = {(s, s), ((s·t)·u,s·(t·u))∣∣s, t,u ∈ C(BPA−drt–δ)
}

First we look at the transitions of the left-hand side. Suppose (s·t)·u σ→ p. Then
this must be due to s σ→ p′ and p ≡ (p′·t)·u. So, s·(t·u) σ→ p′·(t·u), and note that
((p′·t)·u,p′·(t·u)) ∈ R.

The proof for the right-hand side is analogous.
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Axiom DRT1 Take the relation:

R = {(s, s), (σ(s)+σ(t),σ(s+ t))∣∣s, t ∈ C(BPA−drt–δ)
}

We look at the transitions of both sides at the same time. First, note that σ(s) +
σ(t) a3 and σ(s+ t) a3 . Secondly, σ(s)+σ(t) σ→ p iff p ≡ s+ t iff σ(s+ t) σ→ p, and
note that (p,p) ∈ R.

Axiom DRT2 Take the relation:

R = {(s, s), (σ(s)·t,σ(s·t))∣∣s, t ∈ C(BPA−drt–δ)
}

We look at the transitions of both sides at the same time. First, note that σ(s)·t a3
andσ(s·t) a3 . Secondly,σ(s)·t σ→ p iff p ≡ s·t iffσ(s·t) σ→ p, and note that (p,p) ∈ R.

�

Remark 4.3.1.5 (Soundness of BPA−drt–δ)
Soundness of BPA−drt–δ is also claimed (without proof) in Theorem 2.12.4 of BAETEN AND

VERHOEF [37] (where BPA−drt–δ is called BPAdt).

Lemma 4.3.1.6 (Sufficient Condition for Completeness)
Let P be a process algebra that contains Axiom A3, ∼P the corresponding bisimulation
congruence, andM the corresponding bisimulation model. Now, in order to prove that for
all closed terms s and t of P we have that:

s ∼P t =⇒ T ` s = t (∗)

it is sufficient to prove that:

s+ t ∼P t =⇒ T ` s+ t = t. (†)

Proof Let s and t be closed terms of P. Now assume (†) and the left-hand side of (∗) to
hold. Then prove the right-hand side of (∗). This is done as follows: by the soundness of
P with respect toM, the fact that ∼P is a congruence, and Axiom A3, we have s+ t ∼P t+
t ∼P t and t + s ∼P s + s ∼P s. Therefore, by (†), also T ` s + t = t and T ` t + s = s. But
that gives us T ` s = t + s = s+ t = t, and we are done. �

Lemma 4.3.1.7 (Towards Completeness of BPA−drt–δ)
Let x and y be closed BPA−drt–δ terms. Then we have:

(i). T(BPA−drt–δ) î x a→√ =⇒ BPA−drt–δ ` x = a+ x,
(ii). T(BPA−drt–δ) î x a→ y =⇒ BPA−drt–δ ` x = a·y + x,
(iii). T(BPA−drt–δ) î x σ→ y =⇒ BPA−drt–δ ` x = σ(y)+ x,
(iv). T(BPA−drt–δ) î x a→ y =⇒ n(x) > n(y),
(v). T(BPA−drt–δ) î x σ→ y =⇒ n(x) > n(y).
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Proof For parts (i), (ii), and (iii) we assume, by Theorem 4.3.1.2 and Theorem 4.3.1.4,
without loss of generality, that x is a basic term, and apply induction on the structure
of basic terms. For parts (iv) and (v) this does not work, as bisimulation obviously is
not a congruence for n(x). Therefore, in proving them we use induction on the general
structure of terms.

(i). Case 1: x is an undelayable action. Because T(BPA−drt–δ) î x a→√, it must then be
the case that x ≡ a. So we have BPA−drt–δ ` x = a = a + a = a + x. Case 2: x is
of the form undelayable action followed by another basic term. This is in contra-
diction with T(BPA−drt–δ) î x a→√, so this case does not occur. Case 3: x is of the
form s + t, where s and t are again basic terms. As T(BPA−drt–δ) î s + t a→

√
, nec-

essarily T(BPA−drt–δ) î s a→
√

or T(BPA−drt–δ) î t a→
√

. Therefore, by the induction
hypothesis, BPA−drt–δ ` s = a + s or BPA−drt–δ ` t = a + t. But then in both cases
BPA−drt–δ ` x = s+ t = a+s+ t = a+x. Case 4: x is of the form σ(s) for some basic
term s. As we know that T(BPA−drt–δ) î x a→√, this case cannot occur.

(ii). Case 1: x is an undelayable action. This is in contradiction with T(BPA−drt–δ) î
x a→ y, so this case does not occur. Case 2: x is of the form undelayable action fol-
lowed by another basic term. Then, because T(BPA−drt–δ) î x a→ y, it must be that
x ≡ a·y. So, BPA−drt–δ ` x = a·y = a·y + a·y = a·y + x. Case 3: x is of the
form s + t, where s and t are again basic terms. As T(BPA−drt–δ) î s + t a→ y, nec-
essarily T(BPA−drt–δ) î s a→ y or T(BPA−drt–δ) î t a→ y. Therefore, by the induction
hypothesis, BPA−drt–δ ` s = a·y + s or BPA−drt–δ ` t = a·y + t. So in both cases
BPA−drt–δ ` x = s+ t = a·y+ s+ t = a·y+ x. Case 4: x is of the form σ(s) for some
basic term s. As we know that T(BPA−drt–δ) î x a→ y, this case cannot occur.

(iii). Case 1: x is an undelayable action. This is in contradiction with T(BPA−drt–δ) î
x σ→ y, so this case does not occur. Case 2: x is of the form undelayable action fol-
lowed by another basic term. For the same reason, this case cannot occur either.
Case 3: x is of the form s+ t where s and t are again basic terms. As T(BPA−drt–δ) î
x σ→ y, we know that either T(BPA−drt–δ) î s σ→ y, or T(BPA−drt–δ) î t σ→ y, or both.
So, by the induction hypothesis, either BPA−drt–δ ` t = σ(y) + t, or BPA−drt–δ ` s =
σ(y) + s, or both. So in all cases BPA−drt–δ ` x = s + t = σ(y) + s + t = σ(y) + x.
Case 4: x is of the form σ(s) for some basic term s. Then necessarily s ≡ y. So,
BPA−drt–δ ` x = x+ x = σ(y)+ x = σ(s)+ x.

(iv). Case 1: x is an undelayable action. This is in contradiction with T(BPA−drt–δ) î
x a→ y, so this case does not occur. Case 2: x is of the form s·t, for certain terms s
and t. Then, byT(BPA−drt–δ) î x a→ y, we either haveT(BPA−drt–δ) î s a→

√
and y ≡ t,

or we have T(BPA−drt–δ) î s a→ s′ and y ≡ s′ ·t for some term s′. In the first case,
we have n(x) = n(s·t) = n(s)+ n(t)+ 1 > n(t) = n(y), and in the second we can
apply the induction hypothesis to arrive at n(s) > n(s′), so we get n(x) = n(s·t) =
n(s)+n(t)+1> n(s′)+n(t)+1 = n(s′·t) = n(y). Case 3: x is of the form s+t, for
certain terms s and t. As T(BPA−drt–δ) î s+ t a→ y, necessarily T(BPA−drt–δ) î s a→ y
or T(BPA−drt–δ) î t a→ y. Therefore, by the induction hypothesis, n(s) > n(y) or
n(t) > n(y). As n ranges over the positive naturals only, in both cases n(x) =
n(s+ t) = n(s)+ n(t)+ 1 > n(y). Case 4: x ≡ σ(s) for a certain term s, does not
occur, as T(BPA−drt–δ) î σ(s)

a
3 .
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(v). Case 1: x is an undelayable action. This is in contradiction with T(BPA−drt–δ) î
x σ→ y, so this case does not occur. Case 2: x is of the form s·t, for certain terms
s and t. Then, necessarily, T(BPA−drt–δ) î s σ→ s′ and y ≡ s′ · t for some term s′.
We now can apply the induction hypothesis to arrive at n(s) > n(s′), so we get
n(x) = n(s·t) = n(s) + n(t) + 1 > n(s′) + n(t) + 1 = n(s′ ·t) = n(y). Case 3:
x is of the form s + t, for certain terms s and t. Now, by T(BPA−drt–δ) î x σ→ y we
know that either T(BPA−drt–δ) î s σ→ y, or T(BPA−drt–δ) î t σ→ y, or both. So, by the
induction hypothesis, either n(s) > n(y), or n(t) > n(y), or both. So in all cases
n(x) = n(s + t) = n(s) + n(t) + 1 > n(y). Case 4: if x is of the form σ(s), for a
certain term s, it must be the case that s ≡ y. So, n(x) = n(σ(s)) = n(σ(y)) =
n(y)+ 1 > n(y).

�

Theorem 4.3.1.8 (Completeness of BPA−drt–δ)
The axiom system BPA−drt–δ is a complete axiomatization of the set of closed BPA−drt–δ terms
modulo bisimulation equivalence.

Proof We use the direct method described in Proof Outline 4.2.3.1 on page 70. Let x
and y be bisimilar closed BPA−drt–δ terms. We have to prove that BPA−drt–δ ` x = y. With
the aid of Theorem 4.3.1.2 and Theorem 4.3.1.4, it is enough to prove this for basic terms.
By Lemma 4.3.1.6 it is even enough to prove for all basic terms x and y that:

x+ y ∼BPA−drt–δ y =⇒ BPA−drt–δ ` x+ y = y
We will prove this by induction on n(x), using Lemma 4.3.1.7(iv)–(v) and case distinction
on the form of basic term x. Case 1: x is of the form a, for a ∈ A. Then T(BPA−drt–δ) î
x a→√, so T(BPA−drt–δ) î x + y a→√, and because x + y ∼BPA−drt–δ y we have T(BPA−drt–δ) î
y a→√, so with Lemma 4.3.1.7(i) we find that BPA−drt–δ ` x+ y = y. This proves the basis
of our induction. Case 2: x is of the form a·s, when s is again a basic BPA−drt–δ term. Then
T(BPA−drt–δ) î x a→ s, and therefore T(BPA−drt–δ) î x + y a→ s, so because x + y ∼BPA−drt–δ y
there is an s′ with T(BPA−drt–δ) î y a→ s′ and s ∼BPA−drt–δ s′. But then by Theorem 4.3.1.4 and
Axiom A3 also s+ s′ ∼BPA−drt–δ s′ and s′ + s ∼BPA−drt–δ s and with induction we find BPA−drt–δ `
s+s′ = s′ and BPA−drt–δ ` s′+s = s. So BPA−drt–δ ` s = s′. Now BPA−drt–δ ` x+y = a·s+y =
a·s′+y = y with Lemma 4.3.1.7(ii). Case 3: x is of the form s+t, for certain basic BPA−drt–δ
terms s and t. Since x+ y ∼BPA−drt–δ y, we also have s+ y ∼BPA−drt–δ y and t+ y ∼BPA−drt–δ y. Then
by the induction hypothesis BPA−drt–δ ` s+y = y and BPA−drt–δ ` t+y = y. So BPA−drt–δ `
x+ y = s+ t + y = s+ y = y. Case 4: x is of the form σ(x′), for a certain basic BPA−drt–δ
term x′. Now T(BPA−drt–δ) î x σ→ x′, and since x+y ∼BPA−drt–δ y, we also have T(BPA−drt–δ) î
y σ→ y′ and T(BPA−drt–δ) î x + y σ→ x′ + y′ for some y′ such that x′ + y′ ∼BPA−drt–δ y′. By
Lemma 4.3.1.7(iii) we have BPA−drt–δ ` y = σ(y′) + y. By the induction hypothesis we
have BPA−drt–δ ` x′ + y′ = y′. So, BPA−drt–δ ` x + y = σ(x′) + y = σ(x′) + σ(y′) + y =
σ(x′ + y′)+ y = σ(y′)+ y = y. �

Remark 4.3.1.9 (Completeness of BPA−drt–δ)
Completeness of BPA−drt–δ is also claimed in Theorem 2.12.5 of BAETEN AND VERHOEF [37]
(where BPA−drt–δ is called BPAdt). The proof given there, however, is incorrect: the (sup-
posedly) bijective mapping ϕ is not bijective, as ϕ−1(σ) is undefined.
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4.3.2 BPA−drt–ID

We prove elimination, soundness, and completeness of BPA−drt–ID. The respective proofs
are like the corresponding proofs for BPA−drt–δ in Section 4.3.1, albeit that the extension
of the signature with the undelayable deadlock and the “now” operator makes the com-
pleteness proof more complex.

Theorem 4.3.2.1 (Elimination for BPA−drt–ID)
Let t be a closed BPA−drt–ID term. Then there is a basic term s such that BPA−drt–ID ` s = t.
Proof We use the lexicographical path ordering method we described in Proof Out-
line 4.2.1.1 on page 68. We select Axioms A4, A5, DRT2, and DCS1–DCS4 of BPA−drt–ID
to be turned into the term-rewriting system for BPA−drt–ID shown in Table 4.2.

The rewriting rules of the term-rewriting system for BPA−drt–ID are given in Table 4.2.
The well-founded ordering > on constants and function symbols is the following:

(x+ y)·z→ x·z+ y·z RA4

(x·y)·z→ x·(y·z) RA5

σ(x)·y→ σ(x·y) RDRT2

ν(a)→ a RDCS1

ν(x+ y)→ ν(x)+ ν(y) RDCS2

ν(x·y)→ ν(x)·y RDCS3

ν(σ(x))→ δ RDCS4

Table 4.2: Term-Rewriting System for BPA−drt–ID.

a < σ <·< ν
Moreover, ·has the lexicographical status of the first argument. Now we show that the
left-hand side of every rewriting rule is bigger than the right-hand side with respect to
the ordering �lpo . This is done by the following reductions:

ν(a)�lpo ν?(a)
�lpo a

ν(x+ y)�lpo ν?(x+ y)�lpo ν?(x+ y)+ ν?(x+ y)
�lpo ν(x+? y)+ ν(x+? y)�lpo ν(x)+ ν(y)

ν(x·y)�lpo ν?(x·y)�lpo ν?(x·y)·ν?(x·y)�lpo ν(x·?y)·(x·y)
�lpo ν(x)·(x·y)�lpo ν(x)·?(x·y)�lpo ν(x)·(x·?y)�lpo ν(x)·y

ν(σ(x))�lpo ν?(σ(x))
�lpo δ

Note that we do not give reductions for RA4, RA5, and RDRT2 as these already have been
given in the proof of Theorem 4.3.1.2 on page 72, and since the new ordering is a proper
extension of the old one, these proofs remain valid.
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Next, we will prove that the normal forms of the closed BPA−drt–ID terms are basic
terms. Thereto, suppose that s is a normal form of some closed BPA−drt–ID term. Further-
more, suppose that s is not a basic term. Let s′ denote the smallest subterm of s which
is not a basic term. Then we can prove that s′ is not a normal form by case analysis. We
distinguish all possible cases:

(i). s′ is an undelayable action or δ. But then s′ is a basic term. This is in contradiction
with the assumption that s′ is not a basic term, so this case does not occur.

(ii). s′ is of the form s′1·s′2 for basic terms s′1 and s′2. With case analysis on the structure
of basic term s′1:

(a) If s′1 is an undelayable action or δ, then s′1·s′2 is a basic term, and so s′ is a basic
term which again contradicts the assumption that s′ is not a basic term. This
case can therefore not occur.

(b) If s′1 is of the form a·t for some a ∈ Aδ and basic term t, then rewriting rule
RA5 can be applied. So, s′ is not a normal form.

(c) If s′1 is of the form t1+ t2 for t1 and t2 basic terms. Then rewriting rule RA4 is
applicable. Therefore, s′ is not a normal form.

(d) If s′1 is of the form σ(t) for some basic term t. Then rewriting rule RDRT2 is
applicable. So, s′ is not a normal form.

(iii). s′ is of the form s′1 + s′2 for basic terms s′1 and s′2. In this case s′ would be a basic
term, which contradicts the assumption that s′ is not a basic term. Therefore, this
case cannot occur.

(iv). s′ is of the form σ(t) for some basic term t. But then s′ is basic term too, so the
case does not occur.

(v). s′ is of the form ν(t) for some basic term t. But then one of RDCS1–RDCS4 is ap-
plicable, so s′ is not a normal form.

In any case that can occur it follows that s′ is not a normal form. Since s′ is a subterm of
s, we conclude that s is not a normal form. This contradicts the assumption that s is a
normal form. From this contradiction we conclude that s is a basic term, which completes
the proof. �

Remark 4.3.2.2 (Elimination for BPA−drt–ID)
Elimination for BPA−drt–ID is also claimed (without proof) in Theorem 2.1 of BAETEN AND

RENIERS [35].

Theorem 4.3.2.3 (Soundness of BPA−drt–ID)
The set of closed BPA−drt–ID terms modulo bisimulation equivalence is a model of BPA−drt–ID.

Proof We use the direct method described in Proof Outline 4.2.2.1 on page 69. In
Theorem 4.3.1.4 we have already proven the soundness of Axioms A1–A5 and DRT1–
DRT2 with respect to the term-deduction system T(BPA−drt–δ). Since the term-deduc-
tion system T(BPA−drt–ID) uses the same underlying model as the term-deduction sys-
tem T(BPA−drt–δ), these proofs remain valid in the setting of BPA−drt–ID. Therefore, we
only have to prove soundness of the additional Axioms DRT3–DRT5 and DCS1–DCS4.
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Axiom DRT3 Take the relation:

R = {(δ·s, δ)∣∣s ∈ C(BPA−drt–ID)
}

We look at the transitions of both sides at the same time. Observe that neither the
left-hand side nor the right-hand side of the axiom can perform any transition: δ·
s a3 , δ·s σ3 and δ a

3 , δ σ
3 .

Axiom DRT4 Take the relation:

R = {(s, s), (s+ δ, s)∣∣s ∈ C(BPA−drt–ID)
}

We look at the transitions of both sides at the same time. First, s+ δ a→ p iff s a→ p,
and note that (p,p) ∈ R. Secondly, s+ δ a→√ iff s a→√. Thirdly, s+ δ σ→ p iff s σ→ p,
and note that (p,p) ∈ R.

Axiom DRT5 Take the relation:

R = {(s, s), (σ(s)+ δ,σ(s))∣∣s ∈ C(BPA−drt–ID)
}

We look at the transitions of both sides at the same time. Observe that neither the
left-hand side nor the right-hand side of the axiom can perform an a-transition:
σ(s)+δ a

3 and σ(s) a3 . Furthermore, the only σ-transitions are σ(s)+δ σ→ s and
σ(s) σ→ s, and note that (s, s) ∈ R.

Axiom DCS1 Take the relation:

R = {(ν(a),a))}

We look at the transitions of both sides at the same time. Observe that either side
of the axiom can only do an a-transition to

√
: ν(a) a→√ and a a→√. No other tran-

sitions are possible.

Axiom DCS2 Take the relation:

R = {(s, s), (ν(s+ t),ν(s)+ ν(t))∣∣s, t ∈ C(BPA−drt–ID)
}

We look at the transitions of both sides at the same time. Observe that neither side
of the axiom can do a σ-transition: ν(s + t) σ3 and ν(s) + ν(t) σ3 . Furthermore,
ν(s+t) a→ p iff s+t a→ p iff s a→ p or t a→ p iff ν(s) a→ p or ν(t) a→ p iff ν(s)+ν(t) a→ p,
and note that (p,p) ∈ R. Finally, ν(s + t) a→√ iff s + t a→√ iff s a→√ or t a→√ iff
ν(s) a→√ or ν(t) a→√ iff ν(s)+ ν(t) a→√.

Axiom DCS3 Take the relation:

R = {(s, s), (ν(s·t),ν(s)·t)∣∣s, t ∈ C(BPA−drt–ID)
}

We look at the transitions of both sides at the same time. Observe that neither side
of the axiom can do aσ-transition: ν(s·t) σ3 and ν(s)·t σ3 . Furthermore, ν(s·t) a→ p
iff s · t a→ p iff s a→√ and p ≡ t or s a→ s′ and p ≡ s′ · t iff ν(s) a→√ and p ≡ t or
ν(s) a→ s′ and p ≡ s′·t iff ν(s)·t a→ p, and note that (p,p) ∈ R. Finally, ν(s·t) a3√
and ν(s)·t a3√.
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Axiom DCS4 Take the relation:

R = {(ν(σ(s)),δ)∣∣s ∈ C(BPA−drt–ID)
}

We look at the transitions of both sides at the same time. Observe that neither the
left-hand side nor the right-hand side of the axiom can perform any a-transition or
σ-transition: ν(σ(s)) a3 , ν(σ(s)) σ3 , and δ a

3 , δ σ
3 .

�

Remark 4.3.2.4 (Soundness of BPA−drt–ID)
Soundness of BPA−drt–ID is also claimed (without proof) in Section 2.12.1 of BAETEN AND

VERHOEF [37] (where BPA−drt–ID is called BPAδdt), and in Theorem 2.2 of BAETEN AND RE-
NIERS [35].

Lemma 4.3.2.5 (Towards Completeness of BPA−drt–ID)
Let x be a closed BPA−drt–ID term and let a ∈ A. Then we have:

(i). T(BPA−drt–ID) î x a→√ =⇒ BPA−drt–ID ` x = a+ x,

(ii). T(BPA−drt–ID) î x a→ y =⇒ BPA−drt–ID ` x = a·y+ x,

(iii). T(BPA−drt–ID) î x σ3 =⇒ BPA−drt–ID ` x = ν(x),

(iv). BPA−drt–ID ` x+ δ = x,

(v). T(BPA−drt–ID) î x σ→ y =⇒ BPA−drt–ID ` x = σ(y)+ ν(x),

(vi). T(BPA−drt–ID) î x a→ y =⇒ n(x) > n(y),

(vii). T(BPA−drt–ID) î x σ→ y =⇒ n(x) > n(y).

Proof For part (i)–(v) we assume, by Theorem 4.3.2.1 and Theorem 4.3.2.3, without loss
of generality, that x is a basic term, and then apply induction on the structure of basic
terms. For part (vi) and (vii) we again have to use induction on the general structure of
terms.

(i). Suppose that T(BPA−drt–ID) î x a→√. Case 1: x ≡ b, where b ∈ Aδ. Because
T(BPA−drt–ID) î x a→√, it must be the case that b ≡ a. So we have BPA−drt–ID `
x = b = b + b = a + b = a + x. Case 2: x ≡ b·x′, where b ∈ Aδ and x′ is a basic
term. This is in contradiction with T(BPA−drt–ID) î x a→√, so this case does not oc-
cur. Case 3: x ≡ x′+x′′, where x′ and x′′ are basic terms. As T(BPA−drt–ID) î x a→√,
necessarily T(BPA−drt–ID) î x′ a→√ or T(BPA−drt–ID) î x′′ a→√. Therefore, by the in-
duction hypothesis, BPA−drt–ID ` x′ = a+ x′ or BPA−drt–ID ` x′′ = a+ x′′. But then in
both cases BPA−drt–ID ` x = x′ + x′′ = a+ x′ + x′′ = a+ x. Case 4: x ≡ σ(x′), where
x′ is a basic term. This is in contradiction with T(BPA−drt–ID) î x a→√, so this case
does not occur.
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(ii). Suppose that T(BPA−drt–ID) î x a→ y. Case 1: x ≡ b, where b ∈ Aδ. This is in contra-
diction with T(BPA−drt–ID) î x a→ y, so this case does not occur. Case 2: x ≡ b·x′,
where b ∈ Aδ and x′ is a basic term. Then, because T(BPA−drt–ID) î x a→ y, it must
be that b ≡ a and x′ ≡ y. So, BPA−drt–ID ` x = x + x = b·x′ + x = a·y + x. Case 3:
x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPA−drt–ID) î x a→ y, necessarily
T(BPA−drt–ID) î x′ a→ y or T(BPA−drt–ID) î x′′ a→ y. Therefore, by the induction hy-
pothesis, BPA−drt–ID ` x′ = a·y + x′ or BPA−drt–ID ` x′′ = a·y + x′′. But then in both
cases BPA−drt–ID ` x = x′ + x′′ = a·y + x′ + x′′ = a·y + x. Case 4: x ≡ σ(x′), where
x′ is a basic term. This is in contradiction with T(BPA−drt–ID) î x a→ y, so this case
does not occur.

(iii). Suppose that T(BPA−drt–ID) î x σ3 . Case 1: x ≡ a, where a ∈ Aδ. We have
BPA−drt–ID ` x = a = ν(a) = ν(x). Case 2: x ≡ a·x′, where a ∈ Aδ and x′ is a
basic term. We have BPA−drt–ID ` x = a·x′ = ν(a)·x′ = ν(a·x′) = ν(x). Case 3:
x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPA−drt–ID) î x σ3 , necessar-
ily T(BPA−drt–ID) î x′ σ3 and T(BPA−drt–ID) î x′′ σ3 . Therefore, by the induction
hypothesis, BPA−drt–ID ` x′ = ν(x′) and BPA−drt–ID ` x′′ = ν(x′′). But then also
BPA−drt–ID ` x = x′ + x′′ = ν(x′) + ν(x′′) = ν(x′ + x′′) = ν(x). Case 4: x ≡ σ(x′),
where x′ is a basic term. This is in contradiction with T(BPA−drt–ID) î x σ3 , so this
case does not occur.

(iv). Case 1: x ≡ a, where a ∈ Aδ. Then we have BPA−drt–ID ` x + δ = a + δ = a = x.
Case 2: x ≡ a·x′, where a ∈ Aδ and x′ is a basic term. Then BPA−drt–ID ` x + δ =
a·x′+δ = a·x′+δ·x′ = (a+δ)·x′ = a·x′ = x. Case 3: x ≡ x′+x′′, where x′ and x′′ are
basic terms. Then, by the induction hypothesis, BPA−drt–ID ` x′+δ = x′, x′′+δ = x′′.
So, BPA−drt–ID ` x + δ = x′ + x′′ + δ = x′ + x′′ = x. Case 4: x ≡ σ(x′), where x′ is a
basic term. Then BPA−drt–ID ` x+ δ = σ(x′)+ δ = σ(x′) = x.

(v). Suppose that T(BPA−drt–ID) î x σ→ y. Case 1: x ≡ a, where a ∈ Aδ. This is in contra-
diction with T(BPA−drt–ID) î x σ→ y, so this case does not occur. Case 2: x ≡ a·x′,
where a ∈ Aδ and x′ is a basic term. This is in contradiction with T(BPA−drt–ID) î
x σ→ y, so this case does not occur. Case 3: x ≡ x′ + x′′, where x′ and x′′ are ba-
sic terms. As T(BPA−drt–ID) î x σ→ y, necessarily (1) T(BPA−drt–ID) î x′ σ→ y, x′′ σ3 ,
or, (2) T(BPA−drt–ID) î x′ σ3 , x′′ σ→ y, or, (3) T(BPA−drt–ID) î x′ σ→ y′, x′′ σ→ y′′ where
y ≡ y′+y′′. In the first case, by the induction hypothesis, we have BPA−drt–ID ` x′ =
σ(y) + ν(x′), and, by (iii), BPA−drt–ID ` x′′ = ν(x′′). Therefore, BPA−drt–ID ` x =
x′ + x′′ = σ(y) + ν(x′) + ν(x′′) = σ(y) + ν(x′ + x′′) = σ(y) + ν(x). The second
case is treated analogously. In the third case we have, by the induction hypothesis,
BPA−drt–ID ` x′ = σ(y′)+ν(x′), x′′ = σ(y′′)+ν(x′′). Therefore we have BPA−drt–ID `
x = x′+x′′ = σ(y′)+ν(x′)+σ(y′′)+ν(x′′) = σ(y′+y′′)+ν(x′+x′′) = σ(y)+ν(x).
Case 4: x ≡ σ(x′), where x′ is a basic term. Because T(BPA−drt–ID) î x σ→ y, it must
be the case that x′ ≡ y. So we have BPA−drt–ID ` x = σ(x′) = σ(y) = σ(y) + δ =
σ(y)+ ν(σ(x′)) = σ(y)+ ν(x).

(vi). Suppose that T(BPA−drt–ID) î x a→ y. Case 1: x ≡ b, where b ∈ Aδ. This is in
contradiction with T(BPA−drt–ID) î x a→ y, so this case does not occur. Case 2:
x ≡ x′ ·x′′, for certain terms x′ and x′′. Then, because T(BPA−drt–ID) î x a→ y, we
either have T(BPA−drt–ID) î x′ a→√ and y ≡ x′′, or we have T(BPA−drt–ID) î x′ a→ x′′′
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and y ≡ x′′′ ·x′′ for some term x′′′. In the first case, we have n(x) = n(x′ ·x′′) =
n(x′)+n(x′′)+1 > n(x′′) = n(y), and in the second we can apply the induction hy-
pothesis to arrive at n(x′) > n(x′′′), so we get n(x) = n(x′·x′′) = n(x′)+n(x′′)+1 >
n(x′′′) + n(x′′) + 1 = n(x′′′ · x′′) = n(y). Case 3: x ≡ x′ + x′′, for certain
terms x′ and x′′. Since T(BPA−drt–ID) î x a→ y, necessarily T(BPA−drt–ID) î x′ a→ y
or T(BPA−drt–ID) î x′′ a→ y. Therefore, by the induction hypothesis, n(x′) > n(y) or
n(x′′) > n(y). In both cases n(x) = n(x′+x′′) = n(x′)+n(x′′)+1 > n(y). Case 4:
x ≡ σ(x′), for a certain term x′. This is in contradiction with T(BPA−drt–ID) î x a→ y,
so this case does not occur. Case 5: x ≡ ν(x′), for a certain term x′. Since
T(BPA−drt–ID) î x a→ y, necessarily T(BPA−drt–ID) î x′ a→ y. Therefore, by the induc-
tion hypothesis, n(x′) > n(y). So, n(x) = n(ν(x′)) = n(x′)+ 1 > n(y).

(vii). Suppose that T(BPA−drt–ID) î x σ→ y. Case 1: x ≡ a, where a ∈ Aδ. This is in contra-
diction with T(BPA−drt–ID) î x σ→ y, so this case does not occur. Case 2: x ≡ x′·x′′,
for certain terms x′ and x′′. Then necessarily, x′ σ→ x′′′ and y ≡ x′′′·x′′ for some term
x′′′. We now can apply the induction hypothesis to arrive at n(x′) > n(x′′′), so we
get n(x) = n(x′·x′′) = n(x′)+n(x′′)+ 1 > n(x′′′)+n(x′′)+1 = n(x′′′·x′′) = n(y).
Case 3: x ≡ x′ + x′′, for certain terms x′ and x′′. As T(BPA−drt–ID) î x σ→ y, neces-
sarily (1) T(BPA−drt–ID) î x′ σ→ y, x′′ σ3 , or, (2) T(BPA−drt–ID) î x′ σ3 , x′′ σ→ y, or, (3)
T(BPA−drt–ID) î x′ σ→ y′, x′′ σ→ y′′ where y ≡ y′+y′′. In the first case, by the induction
hypothesis, n(x′) > n(y). So n(x) = n(x′ + x′′) = n(x′) + n(x′′) + 1 > n(y). The
second case is treated analogously. In the third case, by the induction hypothesis,
n(x′) > n(y′) and n(x′′) > n(y′′). So n(x) = n(x′ + x′′) = n(x′) + n(x′′) + 1 >
n(y′) + n(y′′) + 1 = n(y). Case 4: x ≡ σ(x′), for a certain term x′. Because
T(BPA−drt–ID) î x σ→ y, it must be the case that x′ ≡ y. Then we have n(x) =
n(σ(x′)) = n(x′) + 1 = n(y) + 1 > n(y). Case 5: x ≡ ν(x′), for a certain term
x′. This is in contradiction with T(BPA−drt–ID) î x σ→ y, so this case does not occur.

�

Theorem 4.3.2.6 (Completeness of BPA−drt–ID)
The axiom system BPA−drt–ID is a complete axiomatization of the set of closed BPA−drt–ID
terms modulo bisimulation equivalence.

Proof We use the direct method described in Proof Outline 4.2.3.1 on page 70. Sup-
pose x + y ∼BPA−drt–ID y. We then prove that BPA−drt–ID ` x + y = y. By Theorem 4.3.2.1 we
can restrict ourselves to basic terms without loss of generality. The proof is done with
induction on n(x), using Lemma 4.3.2.5(vi)–(vii) and case distinction on the form of basic
term x.

(i). x ≡ δ. Then, using Lemma 4.3.2.5(iv) we have BPA−drt–ID ` x+y = δ+y = y+δ = y.

(ii). x ≡ a, where a ∈ A. From the deduction rules we have T(BPA−drt–ID) î x a→√ and
T(BPA−drt–ID) î x+y a→√. Since x+y ∼BPA−drt–ID y we also have T(BPA−drt–ID) î y a→√.
By Lemma 4.3.2.5(i) we obtain BPA−drt–ID ` y = a+y. So, BPA−drt–ID ` x+y = a+y =
y.

(iii). x ≡ δ·s, where s is a basic term. Then we have BPA−drt–ID ` x = δ·s = δ and, using
(i), BPA−drt–ID ` x+ y = y.
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(iv). x ≡ a·s, where a ∈ A and s is a basic term. From the deduction rules we obtain
T(BPA−drt–ID) î x a→ s and T(BPA−drt–ID) î x + y a→ s. Since x + y ∼BPA−drt–ID y, we then
also have T(BPA−drt–ID) î y a→ t for some t such that s ∼BPA−drt–ID t. By the induction
hypothesis we have BPA−drt–ID ` s = t. From Lemma 4.3.2.5(ii) we have BPA−drt–ID `
y = a·t+ y. So, BPA−drt–ID ` x+ y = a·s+ y = a·t+ y = y.

(v). x ≡ s + t, where s and t are basic terms. Since s + t + y ∼BPA−drt–ID y, we also have
s + y ∼BPA−drt–ID y and t + y ∼BPA−drt–ID y. By the induction hypothesis we then have
BPA−drt–ID ` s+ y = y, t + y = y. So, BPA−drt–ID ` x+ y = s+ t + y = s+ y = y.

(vi). x ≡ σ(s), where s is a basic term. From the deduction rules we now have that
T(BPA−drt–ID) î σ(s) σ→ s and since x + y ∼BPA−drt–ID y we also have T(BPA−drt–ID) î
y σ→ t, x+y σ→ s+ t for some t such that s+ t ∼BPA−drt–ID t. By Lemma 4.3.2.5(v) we have
BPA−drt–ID ` y = σ(t) + ν(y). By the induction hypothesis we have BPA−drt–ID `
s+ t = t. So, BPA−drt–ID ` x+y = σ(s)+y = σ(s)+σ(t)+ν(y)= σ(s+ t)+ν(y)=
σ(t)+ ν(y) = y.

�

Remark 4.3.2.7 (Completeness of BPA−drt–ID)
Completeness of BPA−drt–ID is also claimed (without proof) in Section 2.12.1 of BAETEN

AND VERHOEF [37] (where BPA−drt–ID is called BPAδdt), and in Theorem 2.2 of BAETEN AND

RENIERS [35].

4.3.3 BPA−drt

We prove elimination, soundness, and completeness of BPA−drt. The respective proofs are
like the corresponding proofs for BPA−drt–ID in Section 4.3.2, albeit that the extension of
the signature with the immediate deadlock makes the completeness proof more complex.

Theorem 4.3.3.1 (Elimination for BPA−drt)
Let t be a closed BPA−drt term. Then there is a basic term s such that BPA−drt ` t = s.

Proof We use the lexicographical path ordering method we described in Proof Out-
line 4.2.1.1 on page 68. The term-rewriting system of Table 4.3 on the next page is asso-
ciated to BPA−drt by assigning a direction to some of the axioms. Give·the lexicographical
status for the first argument and define the following well-founded partial ordering on
constant and function symbols:

a < σ < + <·< ν

We give the following reductions for the rewriting rules RA7ID and RDCSID:

δ̇·x�lpo δ̇·?x
�lpo δ̇

ν(δ̇)�lpo ν?(δ̇)
�lpo δ̇
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(x+ y)·z→ x·z+ y·z RA4

(x·y)·z→ x·(y·z) RA5

σ(x)·y→ σ(x·y) RDRT2

δ̇·x→ δ̇ RA7ID

ν(a)→ a RDCS1

ν(x+ y) → ν(x)+ ν(y) RDCS2

ν(x·y)→ ν(x)·y RDCS3

ν(σ(x))→ δ RDCS4

ν(δ̇)→ δ̇ RDCSID

Table 4.3: Term-Rewriting System for BPA−drt.

Note that the reductions for the other rewriting rules have already been given in the
proofs of previous elimination theorems.

Next, we will prove that the normal forms of the closed BPA−drt terms are basic terms.
Thereto, suppose that s is a normal form of some closed BPA−drt term. Furthermore, sup-
pose that s is not a basic term. Let s′ denote the smallest subterm of swhich is not a basic
term. Then we can prove that s′ is not a normal form by case analysis. We distinguish
all possible cases:

(i). s′ is an undelayable action, δ, or δ̇. But then s′ is a basic term. This is in contradic-
tion with the assumption that s′ is not a basic term, so this case does not occur.

(ii). s′ is of the form s′1·s′2 for basic terms s′1 and s′2. With case analysis on the structure
of basic term s′1:

(a) If s′1 is δ̇ then rewriting rule RA7ID can be applied, and hence s′ is not a normal
form.

(b) If s′1 is of the form a for some a ∈ Aδ, then s′1·s′2 is a basic term, and so s′ is a
basic term which again contradicts the assumption that s′ is not a basic term.
This case can therefore not occur.

(c) If s′1 is of the form a·t for some a ∈ Aδ and some basic term t, then rewriting
rule RA5 can be applied. So, s′ is not a normal form.

(d) If s′1 is of the form t1+ t2 for t1 and t2 basic terms. Then rewriting rule RA4 is
applicable. Therefore, s′ is not a normal form.

(e) If s′1 is of the form σ(t) for some basic term t. Then rewriting rule RDRT2 is
applicable. So, s′ is not a normal form.

(iii). s′ is of the form s′1 + s′2 for basic terms s′1 and s′2. In this case s′ would be a basic
term, which contradicts the assumption that s′ is not a basic term. Therefore, this
case cannot occur.
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(iv). s′ is of the form σ(t) for some basic term t. But then s′ is basic term too, so the
case does not occur.

(v). s′ is of the form ν(t) for some basic term t. But then one of RDCS1–RDCS4 or
RDCSID is applicable, so s′ is not a normal form.

In any case that can occur it follows that s′ is not a normal form. Since s′ is a subterm of
s, we conclude that s is not a normal form. This contradicts the assumption that s is a
normal form. From this contradiction we conclude that s is a basic term, which completes
the proof. �

Remark 4.3.3.2 (Elimination for BPA−drt)
Elimination for a slightly different version of BPA−drt is also claimed (without proof) in
Section 3.4 of BAETEN AND BERGSTRA [24].

Theorem 4.3.3.3 (Soundness of BPA−drt)
The set of closed BPA−drt terms modulo bisimulation equivalence is a model of BPA−drt.

Proof We use the direct method described in Proof Outline 4.2.2.1 on page 69. For
soundness of Axioms A1–A5, DRT1–DRT4, and DCS1–DCS4 we refer to the proof of
soundness of BPA−drt–ID. To extend these proofs from BPA−drt–ID to BPA−drt, we have to
check that the bisimulations given in previous soundness proofs respect the immediate-
deadlock predicate (as required by transfer condition (iv.) in 3.2.3.5 on page 53). How-
ever, as the fact that they do can be easily checked, we will not give details.

It remains to prove soundness of the axioms from Table 3.7 on page 52. For all ax-
ioms, we look at the transitions of both sides at the same time.

Axiom DRTSID Take the relation:

R = {(σ(δ̇), δ)}

We look at the transitions of both sides at the same time. We have σ(δ̇)3 and
δ3 . Also, ¬ID(σ(δ̇)) and ¬ID(δ).

Axiom A6ID Take the relation:

R = {(s, s), (s+ δ̇, s)∣∣s ∈ C(BPA−drt)
}

We look at the transitions of both sides at the same time. We have s + δ̇ a→ p iff
s a→ p and s+ δ̇ σ→ p iff s σ→ p, and note that (p,p) ∈ R. Also, s+ δ̇ a→√ iff s a→√, and
ID(s+ δ̇) iff ID(s)∧ ID(δ̇) iff ID(s).

Axiom A7ID Take the relation:

R = {(δ̇·s, δ̇)∣∣s ∈ C(BPA−drt)
}

We look at the transitions of both sides at the same time. We have δ̇·s3 and δ̇3 .
Also, ID(δ̇·s) and ID(δ̇).



88 4 • Soundness and Completeness

Axiom DCSID Take the relation:

R = {(ν(δ̇), δ̇)}

We look at the transitions of both sides at the same time. We have ν(δ̇)3 and δ̇3 .
Also, ID(ν(δ̇)) and ID(δ̇).

�

Remark 4.3.3.4 (Soundness of BPA−drt)
Soundness of a slightly different version of BPA−drt is also claimed (without proof) in Sec-
tion 3.5 of BAETEN AND BERGSTRA [24].

Lemma 4.3.3.5 (Towards Completeness of BPA−drt)
Let x be a closed BPA−drt term and let a ∈ A. Then we have:

(i). T(BPA−drt) î x a→√ =⇒ BPA−drt ` x = a+ x,
(ii). T(BPA−drt) î x a→ y =⇒ BPA−drt ` x = a·y + x,
(iii). T(BPA−drt) î ID(x) =⇒ BPA−drt ` x = δ̇,

(iv). T(BPA−drt) î ¬ID(x) =⇒ BPA−drt ` x+ δ = x,

(v). T(BPA−drt) î x
σ
3 =⇒ BPA−drt ` x = ν(x),

(vi). T(BPA−drt) î x σ→ y =⇒ BPA−drt ` x = σ(y)+ ν(x),
(vii). T(BPA−drt) î x a→ y =⇒ n(x) > n(y),
(viii). T(BPA−drt) î x σ→ y =⇒ n(x) > n(y).

Proof For part (i)–(vi) we assume, by Theorem 4.3.3.1 and Theorem 4.3.3.3, without loss
of generality, that x is a basic term, and apply induction on the structure of basic terms.
For part (vii) and (viii) we again have to use induction on the general structure of terms.

(i). Suppose that T(BPA−drt) î x a→√. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x a→√, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ.
Because T(BPA−drt) î x a→√, it must be the case that b ≡ a. So we have BPA−drt `
x = b = b + b = a + b = a + x. Case 3: x ≡ b·x′, where b ∈ Aδ and x′ is a basic
term. This is in contradiction with T(BPA−drt) î x a→√, so this case does not occur.
Case 4: x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPA−drt) î x a→√, nec-
essarily T(BPA−drt) î x′ a→

√
or T(BPA−drt) î x′′ a→

√
. Therefore, by the induction

hypothesis, BPA−drt ` x′ = a + x′ or BPA−drt ` x′′ = a + x′′. But then in both cases
BPA−drt ` x = x′ + x′′ = a + x′ + x′′ = a + x. Case 5: x ≡ σ(x′), where x′ is a basic
term. This is in contradiction with T(BPA−drt) î x a→√, so this case does not occur.

(ii). Suppose that T(BPA−drt) î x a→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x a→ y, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ. This
is in contradiction with T(BPA−drt) î x a→ y, so this case does not occur. Case 3:
x ≡ b·x′, where b ∈ Aδ and x′ is a basic term. Then, because T(BPA−drt) î x a→ y, it
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must be that b ≡ a and x′ ≡ y. So, BPA−drt ` x = x+ x = b·x′ + x = a·y + x. Case 4:
x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPA−drt) î x a→ y, necessarily
T(BPA−drt) î x′ a→ y or T(BPA−drt) î x′′ a→ y. Therefore, by the induction hypothe-
sis, BPA−drt ` x′ = a ·y + x′ or BPA−drt ` x′′ = a ·y + x′′. But then in both cases
BPA−drt ` x = x′+x′′ = a·y+x′+x′′ = a·y+x. Case 5: x ≡ σ(x′), where x′ is a basic
term. This is in contradiction with T(BPA−drt) î x a→ y, so this case does not occur.

(iii). Suppose that T(BPA−drt) î ID(x). Case 1: x ≡ δ̇. Then we have BPA−drt ` x = δ̇
is trivially fulfilled. Case 2: x ≡ a, where a ∈ Aδ. This is in contradiction with
T(BPA−drt) î ID(x), so this case does not occur. Case 3: x ≡ a·x′, where a ∈ Aδ
and x′ is a basic term. This is in contradiction with T(BPA−drt) î ID(x), so this case
does not occur. Case 4: x ≡ x′+x′′, where x′ and x′′ are basic terms. Then, because
T(BPA−drt) î ID(x), it must be the case that T(BPA−drt) î ID(x′), ID(x′′). So, by the
induction hypothesis, we have that BPA−drt ` x′ = δ̇, x′′ = δ̇. But then also BPA−drt `
x = x′ + x′′ = δ̇ + δ̇ = δ̇. Case 5: x ≡ σ(x′), where x′ is a basic term. This is in
contradiction with T(BPA−drt) î ID(x), so this case does not occur.

(iv). Suppose that T(BPA−drt) î ¬ID(x). Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î ¬ID(x), so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ.
Then we have BPA−drt ` x+ δ = a+ δ = a = x. Case 3: x ≡ a·x′, where a ∈ Aδ and
x′ is a basic term. Then BPA−drt ` x + δ = a·x′ + δ = a·x′ + δ·x′ = (a + δ)·x′ =
a·x′ = x. Case 4: x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPA−drt) î
¬ID(x), necessarily T(BPA−drt) î ¬ID(x′) or T(BPA−drt) î ¬ID(x′′). Therefore, by
the induction hypothesis, BPA−drt ` x′ + δ = x′ or BPA−drt ` x′′ + δ = x′′. So, in both
cases, BPA−drt ` x + δ = x′ + x′′ + δ = x′ + x′′ = x. Case 5: x ≡ σ(x′), where x′ is a
basic term. Then BPA−drt ` x+ δ = σ(x′)+ δ = σ(x′) = x.

(v). Suppose that T(BPA−drt) î x
σ
3 . Case 1: x ≡ δ̇. By Axiom DCSID we have BPA−drt `

x = δ̇ = ν(δ̇) = ν(x). Case 2: x ≡ a, where a ∈ Aδ. We have BPA−drt ` x = a =
ν(a) = ν(x). Case 3: x ≡ a ·x′, where a ∈ Aδ and x′ is a basic term. We have
BPA−drt ` x = a·x′ = ν(a)·x′ = ν(a·x′) = ν(x). Case 4: x ≡ x′ + x′′, where x′
and x′′ are basic terms. As T(BPA−drt) î x

σ
3 , necessarily T(BPA−drt) î x′

σ
3 and

T(BPA−drt) î x′′
σ
3 . Therefore, by the induction hypothesis, BPA−drt ` x′ = ν(x′)

and BPA−drt ` x′′ = ν(x′′). But then also BPA−drt ` x = x′ + x′′ = ν(x′) + ν(x′′) =
ν(x′+x′′) = ν(x). Case 5: x ≡ σ(x′), where x′ is a basic term with¬ID(x). This is in
contradiction with T(BPA−drt) î x

σ
3 , so this case does not occur. Case 6: x ≡ σ(x′),

where x′ is a basic term. Then, by T(BPA−drt) î x
σ
3 , it must be the case that ID(x′).

So, by (iii), we have that BPA−drt ` x′ = δ̇. Therefore, BPA−drt ` x = σ(x′) = σ(δ̇) =
δ = ν(σ(x′)) = ν(x).

(vi). Suppose that T(BPA−drt) î x σ→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x σ→ y, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ. This
is in contradiction with T(BPA−drt) î x σ→ y, so this case does not occur. Case 3:
x ≡ a · x′, where a ∈ Aδ and x′ is a basic term. This is in contradiction with
T(BPA−drt) î x σ→ y, so this case does not occur. Case 4: x ≡ x′+x′′, where x′ and x′′
are basic terms. As T(BPA−drt) î x σ→ y, necessarily (1) T(BPA−drt) î x′ σ→ y, x′′

σ
3 , or,

(2) T(BPA−drt) î x′
σ
3 , x′′ σ→ y, or, (3) T(BPA−drt) î x′ σ→ y′, x′′ σ→ y′′ where y ≡ y′+y′′.

In the first case, by the induction hypothesis, we have BPA−drt ` x′ = σ(y) + ν(x′),
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and, by (v), BPA−drt ` x′′ = ν(x′′). Therefore, BPA−drt ` x = x′ + x′′ = σ(y) +
ν(x′) + ν(x′′) = σ(y) + ν(x′ + x′′) = σ(y) + ν(x). The second case is treated
analogously. In the third case we have, by the induction hypothesis, BPA−drt ` x′ =
σ(y′)+ν(x′), x′′ = σ(y′′)+ν(x′′). Therefore we have BPA−drt ` x = x′+x′′ = σ(y′)+
ν(x′)+σ(y′′)+ν(x′′) = σ(y′+y′′)+ν(x′+x′′) = σ(y)+ν(x). Case 5: x ≡ σ(x′),
where x′ is a basic term. Because T(BPA−drt) î x σ→ y, it must be the case that x′ ≡ y.
So we have BPA−drt ` x = σ(x′) = σ(y) = σ(y)+δ = σ(y)+ν(σ(x′)) = σ(y)+ν(x).

(vii). Suppose that T(BPA−drt) î x a→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x a→ y, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ. This
is in contradiction with T(BPA−drt) î x a→ y, so this case does not occur. Case 3:
x ≡ x′ ·x′′, for certain terms x′ and x′′. Then, because T(BPA−drt) î x a→ y, we ei-
ther have T(BPA−drt) î x′ a→

√
and y ≡ x′′, or we have T(BPA−drt) î x′ a→ x′′′ and

y ≡ x′′′ · x′′ for some term x′′′. In the first case, we have n(x) = n(x′ · x′′) =
n(x′)+n(x′′)+1 > n(x′′) = n(y), and in the second we can apply the induction hy-
pothesis to arrive at n(x′) > n(x′′′), so we get n(x) = n(x′·x′′) = n(x′)+n(x′′)+1 >
n(x′′′)+n(x′′)+1 = n(x′′′·x′′) = n(y). Case 4: x ≡ x′+x′′, for certain terms x′ and
x′′. Since T(BPA−drt) î x a→ y, necessarily T(BPA−drt) î x′ a→ y or T(BPA−drt) î x′′ a→ y.
Therefore, by the induction hypothesis, n(x′) > n(y) or n(x′′) > n(y). In both
cases n(x) = n(x′ + x′′) = n(x′) + n(x′′) + 1 > n(y). Case 5: x ≡ σ(x′), for a
certain term x′. This is in contradiction with T(BPA−drt) î x a→ y, so this case does
not occur. Case 6: x ≡ ν(x′), for a certain term x′. Since T(BPA−drt) î x a→ y, nec-
essarily T(BPA−drt) î x′ a→ y. Therefore, by the induction hypothesis, n(x′) > n(y).
So, n(x) = n(ν(x′)) = n(x′)+ 1 > n(y).

(viii). Suppose that T(BPA−drt) î x σ→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPA−drt) î x σ→ y, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ. This
is in contradiction with T(BPA−drt) î x σ→ y, so this case does not occur. Case 3: x ≡
x′·x′′, for certain terms x′ and x′′. Then necessarily, x′ σ→ x′′′ and y ≡ x′′′·x′′ for some
term x′′′. We now can apply the induction hypothesis to arrive at n(x′) > n(x′′′), so
we get n(x) = n(x′·x′′) = n(x′)+n(x′′)+1 > n(x′′′)+n(x′′)+1 = n(x′′′·x′′) = n(y).
Case 4: x ≡ x′ + x′′, for certain terms x′ and x′′. As T(BPA−drt) î x σ→ y, necessarily
(1) T(BPA−drt) î x′ σ→ y, x′′

σ
3 , or, (2) T(BPA−drt) î x′

σ
3 , x′′ σ→ y, or, (3) T(BPA−drt) î

x′ σ→ y′, x′′ σ→ y′′ where y ≡ y′ + y′′. In the first case, by the induction hypothesis,
n(x′) > n(y). So n(x) = n(x′+x′′) = n(x′)+n(x′′)+1 > n(y). The second case is
treated analogously. In the third case, by the induction hypothesis, n(x′) > n(y′)
and n(x′′) > n(y′′). So n(x) = n(x′+x′′) = n(x′)+n(x′′)+1 > n(y′)+n(y′′)+1 =
n(y). Case 5: x ≡ σ(x′), for a certain term x′. BecauseT(BPA−drt) î x σ→ y, it must be
the case that x′ ≡ y. Then we have n(x) = n(σ(x′)) = n(x′)+1 = n(y)+1 > n(y).
Case 6: x ≡ ν(x′), for a certain term x′. This is in contradiction with T(BPA−drt) î
x σ→ y, so this case does not occur.

�

Theorem 4.3.3.6 (Completeness of BPA−drt)
The axiom system BPA−drt is a complete axiomatization of the set of closed BPA−drt terms
modulo bisimulation equivalence.
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Proof We use the direct method described in Proof Outline 4.2.3.1 on page 70. Suppose
s + t ∼BPA−drt

t. We then prove that BPA−drt ` s + t = t. By Theorem 4.3.3.1 we can restrict
ourselves to basic terms without loss of generality. The proof is done with induction on
n(s), using Lemma 4.3.3.5(vii)–(viii) and case distinction on the form of basic term s.

(i). s ≡ δ̇. Using Axiom A6ID we have BPA−drt ` s+ t = δ̇+ t = t + δ̇ = t.

(ii). s ≡ δ. Then we have ¬ID(s + t), because T(BPA−drt) î ¬ID(s). Since s + t ∼BPA−drt
t,

we also have T(BPA−drt) î ¬ID(t). Using Lemma 4.3.3.5(iv) we have BPA−drt ` s+ t =
δ+ t = t+ δ = t.

(iii). s ≡ a, where a ∈ A. From the deduction rules we have T(BPA−drt) î s a→
√

and
T(BPA−drt) î s+t a→

√
. Since s+t ∼BPA−drt

t we also have T(BPA−drt) î t a→
√

. By Lemma
4.3.3.5(i) we obtain BPA−drt ` t = a+ t. So, BPA−drt ` s+ t = a+ t = t.

(iv). s ≡ δ·s′, where s′ is a basic term. Then we have BPA−drt ` s = δ·s′ = δ and, using
(ii), BPA−drt ` s+ t = t.

(v). s ≡ a·s′, where a ∈ A and s′ is a basic term. From the deduction rules we obtain
T(BPA−drt) î s a→ s′ and T(BPA−drt) î s+ t a→ s′. Since s+ t ∼BPA−drt

t, we then also have
T(BPA−drt) î t a→ t′ for some t′ such that s′ ∼BPA−drt

t′. By the induction hypothesis we
have BPA−drt ` s′ = t′. From Lemma 4.3.3.5(ii) we have BPA−drt ` t = a·t′ + t. So,
BPA−drt ` s+ t = a·s′ + t = a·t′ + t = t.

(vi). s ≡ s′ + s′′, where s′ and s′′ are basic terms. Since s′ + s′′ + t ∼BPA−drt
t, we also have

s′ + t ∼BPA−drt
t and s′′ + t ∼BPA−drt

t. By the induction hypothesis we then have BPA−drt `
s′ + t = t, s′′ + t = t. So, BPA−drt ` s+ t = s′ + s′′ + t = s′ + t = t.

(vii). s ≡ σ(s′), where s′ is a basic term. From the deduction rules we have T(BPA−drt) î
σ(s′) σ→ s′ and since s + t ∼BPA−drt

t we also have T(BPA−drt) î t σ→ t′, s + t σ→ s′ + t′
for some t′ such that s′ + t′ ∼BPA−drt

t′. By Lemma 4.3.3.5(vi) we have BPA−drt ` t =
σ(t′)+ν(t). By the induction hypothesis we have BPA−drt ` s′+ t′ = t′. So, BPA−drt `
s+ t = σ(s′)+ t = σ(s′)+σ(t′)+ ν(t) = σ(s′ + t′)+ ν(t) = σ(t′)+ ν(t) = t.

�

Remark 4.3.3.7 (Completeness of BPA−drt)
Completeness of a slightly different version of BPA−drt is also claimed (without proof) in
Section 3.5 of BAETEN AND BERGSTRA [24].

4.3.4 BPA+drt

We prove elimination, soundness, and completeness of BPA+drt. The respective proofs are
like the corresponding proofs for BPA−drt in Section 4.3.3, although the addition to the
signature of delayable actions and the unbounded start delay complicates matters.

Theorem 4.3.4.1 (Elimination for BPA+drt)
Let t be a closed BPAdrt term. Then there is a basic term s such that BPA+drt ` t = s.
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Proof We use the lexicographical path ordering method we described in Proof Out-
line 4.2.1.1 on page 68. The term-rewriting system is shown in Table 4.4. The rewriting
rules RA4, RA5, RDRT2, RATS, RA7ID, RDCS1–RDCS4, and RDCSID are obtained directly
from the axioms. The rewriting rules RUSD1–RUSD5 and RDCS5 are added to deal prop-
erly with the recursive definition of unbounded start delay. The corresponding equalities
are for closed terms derivable from the axioms, as is shown in Proposition 3.2.4.14 on
page 58. The operator· is assigned the lexicographical status for the first argument and

(x+ y)·z→ x·z+ y·z RA4

(x·y)·z→ x·(y·z) RA5

σ(x)·y→ σ(x·y) RDRT2

bacω→ a RATS

bacω→ a RUSD1

bx·ycω→ bxcω·y RUSD2

bx+ ycω→ bxcω+ bycω RUSD3

bσ(x)cω→ δ RUSD4

bδ̇cω→ δ RUSD5

δ̇·x→ δ̇ RA7ID

ν(a)→ a RDCS1

ν(x+ y) → ν(x)+ ν(y) RDCS2

ν(x·y)→ ν(x)·y RDCS3

ν(σ(x))→ δ RDCS4

ν(a)→ a RDCS5

ν(δ̇)→ δ̇ RDCSID

Table 4.4: Term-Rewriting System for BPAdrt.

the following well-founded partial ordering on the signature of BPAdrt is defined:

a < a < σ < + <·< b cω< ν
We give the following reductions for rewriting rules RATS, RUSD1–RUSD5, and RDCS5:

bacω�lpo bacω
?

�lpo a

bacω�lpo bacω
?

�lpo a

bx·ycω�lpo bx·ycω?�lpo bx·ycω?·bx·ycω?�lpo

⌊
x·?y⌋ω·(x·y)

�lpo bxcω·(x·y)�lpo bxcω·(x·?y)�lpo bxcω·y
bx+ ycω�lpo bx+ ycω

?�lpo bx+ ycω
?+ bx+ ycω?�lpo

⌊
x+? y⌋ω+ ⌊x+? y⌋ω

�lpo bxcω+ bycω
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bσ(x)cω�lpo bσ(x)cω?

�lpo δ

bδ̇cω�lpo bδ̇cω
?

�lpo δ
ν(a)�lpo ν?(a)

�lpo a

Note that the reductions for the other rewriting rules have already been given in the
proofs of previous elimination theorems.

It remains to prove that every normal form of a closed BPAdrt term is a basic term.
Suppose that s is the normal form of a closed BPAdrt term. Furthermore, suppose that s
is not a basic term and that s′ is the smallest subterm of s which is not a basic term. We
distinguish all possible cases:

(i). s′ is of the form a or a for some a ∈ Aδ, or of the form δ̇. Then s′ is clearly a basic
term, so this case does not occur.

(ii). s′ is of the form s1·s2 for basic terms s1 and s2. With respect to basic term s1 the
following cases can be distinguished:

(a) s1 ≡ δ̇; then RA7ID is applicable, so s′ is not a normal form.

(b) s1 ≡ a for some a ∈ Aδ. Then s′ is a basic term. This contradicts the assump-
tion that s′ is not a basic term.

(c) s1 ≡ a for some a ∈ Aδ. Then s′ is a basic term, and we have again a contra-
diction.

(d) s1 ≡ a · s′1 for some a ∈ Aδ and basic term s′1. Then rewriting rule RA5 is
applicable, so s′ is not a normal form.

(e) s1 ≡ a·s′1 for some a ∈ Aδ and some basic term s′1. Then rewriting rule RA5 is
applicable, so s′ is not a normal form.

(f) s1 ≡ s′1 + s′′1 for some basic terms s′1 and s′′2 . Then rewriting rule RA4 is appli-
cable, so s′ is not a normal form.

(g) s1 ≡ σ(s′1) for some basic term s′1. Then rewriting rule RDRT2 is applicable,
so s′ is not a normal form.

(iii). s′ is of the form s′1 + s′2 for basic terms s′1 and s′2. Then s′ is a basic term itself, so
this case cannot happen.

(iv). s′ is of the form σ(s′′) for some basic term s′′. Then again s′ is a basic term itself,
so this case cannot happen either.

(v). s′ is of the form ν(s′′), where s′′ is a basic term. Then one of RDCS1–RDCS5 or
RDCSID can be applied, so s′ is not a normal form.

(vi). s′ is of the form bs′′cω for some basic term s′′. Then one of RATS or RUSD1–RUSD5
can be applied, so s′ is not a normal form.
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In every case s′ is a basic term or a rewriting rule is applicable. If s′ is a basic term this
contradicts the assumption that it is not. If a rewriting rule is applicable then s′ and s
are not a normal form. This contradicts the assumption that s is a normal form. From
this contradiction we conclude that s is a basic term. �

Remark 4.3.4.2 (Elimination for BPAdrt)
Elimination for a somewhat different version of BPAdrt is also claimed (without proof) in
Section 3.4 of BAETEN AND BERGSTRA [24].

Definition 4.3.4.3 (Symbol for a Chain of σ’s)
We will write x

σ=⇒y to indicate that x can reach y by doing zero or more σ-transitions.
Formally,

σ=⇒ denotes the transitive, reflexive closure of
σ→ .

Lemma 4.3.4.4 (Towards Soundness of BPA+drt)
(i). Let p and q be closed BPAdrt terms and R a bisimulation relation such that R(p,q).

Furthermore, suppose that p σ→ p′ and q σ→ q′. Then we have R(p′, q′).

(ii). Let p and q be closed BPAdrt terms such that q ∼BPAdrt
ν(p) + σ(q), and let R be a

reflexive, symmetric, transitive bisimulation relation such that R(q,ν(p) + σ(q)).
Then we have, for all closed terms s such that q

σ=⇒s, that R(q, s).

Proof

(i). By the deduction rules, we have that any closed BPAdrt term has at most one out-
going σ-transition. Then, by p σ→ p′ and q σ→ q′, and the definition of bisimulation,
Definition 3.2.1.8, we have that R(p′, q′).

(ii). We use induction on the number ofσ-transitions in q
σ=⇒s. First, the base case where

there are zero σ-transitions. Then, q ≡ s, and R(q, s) is trivially fulfilled by the
reflexivity of R. Secondly, the induction step. Assume that q

σ=⇒q′ σ→ s, for some
closed BPAdrt term q′, and that by the induction hypothesisR(q, q′). Then, because
q σ→ s′ for some closed BPAdrt term s′, and q′ σ→ s, by (i) we have R(s′, s). Further-
more, because q σ→ s′, and ν(p) + σ(q) σ→ q, by (i) we have R(s′, q). Then, by the
symmetry of R we have R(q, s′), and by transitivity R(q, s).

�

Theorem 4.3.4.5 (Soundness of BPA+drt)
The set of closed BPAdrt terms modulo bisimulation equivalence is a model of BPA+drt.

Proof We use the direct method described in Proof Outline 4.2.2.1 on page 69. The only
new axioms are Axioms ATS, USD, and the conditional axioms RSP(USD). Note that the
soundness proofs for Axioms A1–A5, DRT1–DRT5, and DCS1–DCS4 given in the previous
sections also remain valid in the setting with delayable actions. This is due to the fact
that the underlying model (namely: finite transition systems with σ’s) has not changed.
Or, stated more concretely: all σ-transitions were considered without regard for whether
they resulted from a σrel operator or otherwise, so the extra σ-transitions introduced by
the delayable actions do not matter.
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Axiom ATS Take the relation:

R = {(a, bacω)}

There are only two transitions possible on the left-hand side of the axiom: a a→√
and a σ→ a. The right-hand side can also perform two transitions: bacω a→√ and
bacω σ→ bacω, and note that

(
a, bacω) ∈ R. Finally, neither side satisfies the ID pred-

icate: ¬ID(a) and ¬ID(bacω).

Axiom USD Take the relation:

R = {(s, s), (bscω, ν(s)+σ(bscω))|s ∈ C(BPAdrt)
}

First we look at the transitions of the left-hand side:

(i). Suppose bscω a→ p. Then this must be due to s a→ p. But then also ν(s) a→ p and
ν(s)+σ(bscω) a→ p, and note that (p,p) ∈ R.

(ii). Suppose bscω a→√. Then this must be due to s a→√. But then also ν(s) a→√ and
ν(s)+σ(bscω) a→√.

(iii). Suppose bscω σ→ p. Then necessarily p ≡ bscω. We also have σ(bscω) σ→bscω,
hence ν(s)+σ(bscω) σ→bscω, and note that (bscω, bscω) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose ν(s) + σ(bscω) a→ p. Then this must be due to s a→ p. But then also
bscω a→ p, and note that (p,p) ∈ R.

(ii). Suppose ν(s) + σ(bscω) a→√. Then this must be due to s a→√. But then also
bscω a→√.

(iii). Suppose ν(s)+σ(bscω) σ→ p. Then this must be due to σ(bscω) σ→ p with p ≡
bscω. Clearly, then also bscω σ→ bscω, and note that (bscω, p) ∈ R.

Finally, we look at the immediate-deadlock predicate. Neither side has immediate
deadlock: ¬ID(bscω) and ¬ID(ν(s) + σ(bscω)) (note that unbounded start delay
removes immediate deadlock, see the comment on page 57).

RSP(USD) Suppose that R′ is a reflexive, symmetric, transitive bisimulation relation be-
tween y and ν(x) + σ(y) (which exists by Lemma 3.2.1.10 on page 45). We must
prove that y ∼BPAdrt

bxcω. To do this, take R′ and extend it to a bisimulation relation
R between y and bxcω as follows:

R = R′ ∪ {(s, bxcω)|s ∈ C(BPAdrt)∧ y σ=⇒s}

Now, let s be any closed term such that y
σ=⇒s. Then, by Lemma 4.3.4.4 on the pre-

ceding page, we have that (y, s) ∈ R′.

We now prove that R is indeed a bisimulation. Because R′ already was a bisimula-
tion, we only have to look at the pairs (s, bxcω). First, we look at the transitions of
the left-hand side, i.e., the transitions of s:
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(i). Suppose s a→ p. Then, as (y, s) ∈ R′, y a→ q such that (p,q) ∈ R′. As (y, ν(x)+
σ(y)) ∈ R′, we have ν(x)+σ(y) a→ r for some r such that (q, r) ∈ R′. Hence,
ν(x) a→ r, hence x a→ r, hence bxcω a→ r, and note that by transitivity (p, r) ∈ R′,
so (p, r) ∈ R.

(ii). Suppose s a→√. Then, as (y, s) ∈ R′, y a→√. As (y, ν(x)+σ(y)) ∈ R′, we have
ν(x)+σ(y) a→√. Hence, ν(x) a→√, hence x a→√, hence bxcω a→√.

(iii). Suppose s σ→ p. Since y
σ=⇒s, we have y

σ=⇒p. We also have bxcω σ→bxcω, and note
that (p, bxcω) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose bxcω a→ q. Then x a→ q, hence ν(x) a→ q, hence ν(x) + σ(y) a→ q. As
(y, ν(x) + σ(y)) ∈ R′, we know that y a→ p for some p such that (p,q) ∈ R′.
Since (y, s) ∈ R′, we also have s a→ r for some r such that (p, r) ∈ R′, and
note that by symmetry (r, p) ∈ R′, by transitivity (r, q) ∈ R′, and therefore
(r, q) ∈ R.

(ii). Suppose bxcω a→√. Then x a→√, hence ν(x) a→√, hence ν(x) + σ(y) a→√. As
(y, ν(x) + σ(y)) ∈ R′, we know that y a→√. Since (y, s) ∈ R′, we also have
s a→√.

(iii). Suppose bxcω σ→ q. Then, it must be the case that q ≡ bxcω. We also have
σ(y) σ→ y, hence ν(x)+σ(y) σ→ y, and as (y, ν(x)+σ(y)) ∈ R′, we know that
y σ→ p such that (p, y) ∈ R′. As (y, s) ∈ R′, necessarily s σ→ r for some r such
that (p, r) ∈ R′. Since y

σ=⇒s, we have y
σ=⇒r, and note that (r, bxcω) ∈ R.

Finally, we look at the immediate-deadlock predicate. Neither side has immediate
deadlock: ¬ID(s) (because R′ is a bisimulation between y and ν(x) + σ(y), and
y
σ=⇒s) and ¬ID(bxcω).

�

Remark 4.3.4.6 (Soundness of BPAdrt)
Soundness of a somewhat different version of BPAdrt is also claimed (without proof) in
Section 3.5 of BAETEN AND BERGSTRA [24].

Lemma 4.3.4.7 (Towards Completeness of BPA+drt)
Let x be a closed BPAdrt term and let a ∈ A. Then we have:

(i). T(BPAdrt) î x a→√ =⇒ BPA+drt ` x = a+ x,
(ii). T(BPAdrt) î x a→ y =⇒ BPA+drt ` x = a·y + x,
(iii). T(BPAdrt) î ID(x) =⇒ BPA+drt ` x = δ̇,

(iv). T(BPAdrt) î ¬ID(x) =⇒ BPA+drt ` x+ δ = x,

(v). T(BPAdrt) î x σ3 =⇒ BPA+drt ` x = ν(x),
(vi). T(BPAdrt) î x σ→ y =⇒ BPA+drt ` x = σ(y)+ ν(x),
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(vii). T(BPAdrt) î x σ→ x =⇒ BPA+drt ` x = bxcω,

(viii). T(BPAdrt) î x a→ y =⇒ n(x) > n(y),
(ix). T(BPAdrt) î x σ→ y =⇒ x ≡ y ∨ n(x) > n(y).

Proof For part (i)–(vii) we assume, by Theorem 4.3.4.1 and Theorem 4.3.4.5, without loss
of generality, that x is a basic term, and then apply induction on the structure of basic
terms. For part (viii) and (ix) we again have to use induction on the general structure of
terms.

(i). Suppose that T(BPAdrt) î x a→√. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x a→√, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ.
Because T(BPAdrt) î x a→√, it must be the case that b ≡ a. So we have BPA+drt ` x =
b = b+b = a+b = a+x. Case 3: x ≡ b, where b ∈ Aδ. BecauseT(BPAdrt) î x a→√, it
must be the case that b ≡ a. So we have BPA+drt ` x = b = bbcω= ν(b)+σ

(bbcω) =
ν(b) + ν(b) + σ (bbcω) = b + bbcω = a + b = a + x. Case 4: x ≡ b ·x′, where
b ∈ Aδ and x′ is a basic term. This is in contradiction with T(BPAdrt) î x a→√,
so this case does not occur. Case 5: x ≡ b ·x′, where b ∈ Aδ and x′ is a basic
term. This is in contradiction with T(BPAdrt) î x a→√, so this case does not occur.
Case 6: x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPAdrt) î x a→√, nec-
essarily T(BPAdrt) î x′ a→√ or T(BPAdrt) î x′′ a→√. Therefore, by the induction
hypothesis, BPA+drt ` x′ = a + x′ or BPA+drt ` x′′ = a + x′′. But then in both cases
BPA+drt ` x = x′ + x′′ = a + x′ + x′′ = a + x. Case 7: x ≡ σ(x′), where x′ is a basic
term. This is in contradiction with T(BPAdrt) î x a→√, so this case does not occur.

(ii). Suppose that T(BPAdrt) î x a→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x a→ y, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ. This
is in contradiction with T(BPAdrt) î x a→ y, so this case does not occur. Case 3:
x ≡ b, where b ∈ Aδ. This is in contradiction with T(BPAdrt) î x a→ y, so this case
does not occur. Case 4: x ≡ b ·x′, where b ∈ Aδ and x′ is a basic term. Then,
because T(BPAdrt) î x a→ y, it must be that b ≡ a and x′ ≡ y. So, BPA+drt ` x =
x + x = b ·x′ + x = a ·y + x. Case 5: x ≡ b ·x′, where b ∈ Aδ and x′ is a ba-
sic term. Then, because T(BPAdrt) î x a→ y, it must be that b ≡ a and x′ ≡ y.
So, BPA+drt ` x = b ·x′ = a ·y = (a + a) ·y = a ·y + a ·y = a ·y + x. Case 6:
x ≡ x′ + x′′, where x′ and x′′ are basic terms. As T(BPAdrt) î x a→ y, necessarily
T(BPAdrt) î x′ a→ y or T(BPAdrt) î x′′ a→ y. Therefore, by the induction hypothe-
sis, BPA+drt ` x′ = a ·y + x′ or BPA+drt ` x′′ = a ·y + x′′. But then in both cases
BPA+drt ` x = x′+x′′ = a·y+x′+x′′ = a·y+x. Case 7: x ≡ σ(x′), where x′ is a basic
term. This is in contradiction with T(BPAdrt) î x a→ y, so this case does not occur.

(iii). Suppose that T(BPAdrt) î ID(x). Case 1: x ≡ δ̇. Then BPA+drt ` x = δ̇ is trivially ful-
filled. Case 2: x ≡ a, where a ∈ Aδ. This is in contradiction with T(BPAdrt) î ID(x),
so this case does not occur. Case 3: x ≡ a, where a ∈ Aδ. This is in contradiction
with T(BPAdrt) î ID(x), so this case does not occur. Case 4: x ≡ a·x′, where a ∈ Aδ
and x′ is a basic term. This is in contradiction with T(BPAdrt) î ID(x), so this case
does not occur. Case 5: x ≡ a·x′, where a ∈ Aδ and x′ is a basic term. This is in con-
tradiction with T(BPAdrt) î ID(x), so this case does not occur. Case 6: x ≡ x′ + x′′,
where x′ and x′′ are basic terms. Then, because T(BPAdrt) î ID(x), it must be the
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case that T(BPAdrt) î ID(x′), ID(x′′). So, by the induction hypothesis, we have that
BPA+drt ` x′ = δ̇, x′′ = δ̇. But then also BPA+drt ` x = x′ + x′′ = δ̇ + δ̇ = δ̇. Case 7:
x ≡ σ(x′), where x′ is a basic term. This is in contradiction with T(BPAdrt) î ID(x),
so this case does not occur.

(iv). Suppose that T(BPAdrt) î ¬ID(x). Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î ¬ID(x), so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ.
BPA+drt ` x+δ = a+δ = a = x. Case 3: x ≡ a, where a ∈ Aδ. Then we have BPA+drt `
x+δ = a+δ = bacω+δ = ν(a)+σ (bacω)+δ = a+δ+σ (bacω) = a+σ (bacω) =
ν(a) +σ (bacω) = bacω= a = x. Case 4: x ≡ a·x′, where a ∈ Aδ and x′ is a basic
term. BPA+drt ` x+δ = a·x′+δ = a·x′+δ·x′ = (a+δ)·x′ = a·x′ = x. Case 5: x ≡ a·x′,
where a ∈ Aδ and x′ is a basic term. Then, using Case 3, BPA+drt ` x+δ = a·x′+δ =
a·x′+δ·x′ = (a+δ)·x′ = a·x′ = x. Case 6: x ≡ x′+x′′, where x′ and x′′ are basic terms.
As T(BPAdrt) î ¬ID(x), necessarily T(BPAdrt) î ¬ID(x′) or T(BPAdrt) î ¬ID(x′′).
Therefore, by the induction hypothesis, BPA+drt ` x′+δ = x′ or BPA+drt ` x′′+δ = x′′.
So, in both cases, BPA+drt ` x + δ = x′ + x′′ + δ = x′ + x′′ = x. Case 7: x ≡ σ(x′),
where x′ is a basic term. Then we have BPA+drt ` x+ δ = σ(x′)+ δ = σ(x′) = x.

(v). Suppose that T(BPAdrt) î x σ3 . Case 1: x ≡ δ̇. By Axiom DCSID we have BPA+drt `
x = δ̇ = ν(δ̇) = ν(x). Case 2: x ≡ a, where a ∈ Aδ. We have BPA+drt ` x =
a = ν(a) = ν(x). Case 3: x ≡ a, where a ∈ Aδ. This is in contradiction with
T(BPAdrt) î x σ3 , so this case does not occur. Case 4: x ≡ a ·x′, where a ∈ Aδ
and x′ is a basic term. We have BPA+drt ` x = a·x′ = ν(a)·x′ = ν(a·x′) = ν(x).
Case 5: x ≡ a ·x′, where a ∈ Aδ and x′ is a basic term. This is in contradiction
with T(BPAdrt) î x σ3 , so this case does not occur. Case 6: x ≡ x′ + x′′, where x′
and x′′ are basic terms. As T(BPAdrt) î x σ3 , necessarily T(BPAdrt) î x′ σ3 and
T(BPAdrt) î x′′ σ3 . Therefore, by the induction hypothesis, BPAdrt ` x′ = ν(x′) and
BPA+drt ` x′′ = ν(x′′). But then also BPA+drt ` x = x′ + x′′ = ν(x′)+ ν(x′′) = ν(x′ +
x′′) = ν(x). Case 7: x ≡ σ(x′), where x′ is a basic term. Then, by T(BPAdrt) î x σ3 ,
it must be the case that ID(x′). So, by (iii), we have that BPA+drt ` x′ = δ̇. Therefore,
BPA+drt ` x = σ(x′) = σ(δ̇) = δ = ν(σ(x′)) = ν(x).

(vi). Suppose that T(BPAdrt) î x σ→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x σ→ y, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ. This
is in contradiction with T(BPAdrt) î x σ→ y, so this case does not occur. Case 3:
x ≡ a, where a ∈ Aδ. Because T(BPAdrt) î x σ→ y, it must be the case that y ≡ a.
So we have BPA+drt ` x = a = bacω = ν(a) + σ (bacω) = σ(a) + ν(a) + δ =
σ(a) + ν(a) + ν (σ (bacω)) = σ(a) + ν (ν(a)+σ (bacω)) = σ(a) + ν (bacω) =
σ(a) + ν(a) = σ(y) + ν(x). Case 4: x ≡ a ·x′, where a ∈ Aδ and x′ is a basic
term. This is in contradiction with T(BPAdrt) î x σ→ y, so this case does not occur.
Case 5: x ≡ a·x′, where a ∈ Aδ and x′ is a basic term. Because T(BPAdrt) î x σ→ y,
it must be the case that y ≡ a ·x′. So we have BPA+drt ` x = a ·x′ = bacω·x′ =(
ν(a)+σ (bacω)) ·x′ = ν(a) ·x′ + σ (bacω) ·x′ = σ (bacω) ·x′ + ν(a) ·x′ + δ =
σ(a·x′)+ν(a)·x′+δ·x′ = σ(y)+(ν(a)+δ)·x′ = σ(y)+(ν(a)+ ν (σ (bacω)))·x′ =
σ(y)+ν (a+σ (bacω))·x′ = σ(y)+ν (ν(a)+σ (bacω))·x′ = σ(y)+ν (bacω)·x′ =
σ(y)+ν(a)·x′ = σ(y)+ν(a·x′) = σ(y)+ν(x). Case 6: x ≡ x′+x′′, where x′ and x′′
are basic terms. As T(BPAdrt) î x σ→ y, necessarily (1) T(BPAdrt) î x′ σ→ y, x′′ σ3 , or,
(2) T(BPAdrt) î x′ σ3 , x′′ σ→ y, or, (3) T(BPAdrt) î x′ σ→ y′, x′′ σ→ y′′ where y ≡ y′+y′′.
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In the first case, by the induction hypothesis, we have BPA+drt ` x′ = σ(y) + ν(x′),
and, by (v), BPA+drt ` x′′ = ν(x′′). Therefore, BPA+drt ` x = x′ + x′′ = σ(y) +
ν(x′) + ν(x′′) = σ(y) + ν(x′ + x′′) = σ(y) + ν(x). The second case is treated
analogously. In the third case we have, by the induction hypothesis, BPAdrt ` x′ =
σ(y′)+ν(x′), x′′ = σ(y′′)+ν(x′′). Therefore we have BPA+drt ` x = x′+x′′ = σ(y′)+
ν(x′)+σ(y′′)+ν(x′′) = σ(y′+y′′)+ν(x′+x′′) = σ(y)+ν(x). Case 7: x ≡ σ(x′),
where x′ is a basic term. Because T(BPAdrt) î x σ→ y, it must be the case that x′ ≡ y.
So we have BPA+drt ` x = σ(x′) = σ(y) = σ(y)+δ = σ(y)+ν(σ(x′)) = σ(y)+ν(x).

(vii). Suppose that T(BPAdrt) î x σ→ x. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x σ→ x, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ. This is
in contradiction with T(BPAdrt) î x σ→ x, so this case does not occur. Case 3: x ≡ a,
where a ∈ Aδ. Then we have, using Proposition 3.2.4.14(i), BPA+drt ` x = a = bacω=
bxcω. Case 4: x ≡ a·x′, where a ∈ Aδ and x′ is a basic term. This is in contradiction
with T(BPAdrt) î x σ→ x, so this case does not occur. Case 5: x ≡ a·x′, where a ∈ Aδ
and x′ is a basic term. Then we can derive, using Proposition 3.2.4.14(i) and (ii),
BPA+drt ` x = a·x′ = bacω·x′ = ba·x′cω= bxcω. Case 6: x ≡ x′ + x′′, where x′ and x′′
are basic terms. Then we can derive, using Proposition 3.2.4.14(iii) and the induc-
tion hypothesis, BPA+drt ` x = x′ + x′′ = bx′cω+ bx′′cω= bx′ + x′′cω= bxcω. Case 7:
x ≡ σ(x′), where x′ is a basic term. This is in contradiction with T(BPAdrt) î x σ→ x,
so this case does not occur.

(viii). Suppose that T(BPAdrt) î x a→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x σ→ y, so this case does not occur. Case 2: x ≡ b, where b ∈ Aδ. This
is in contradiction with T(BPAdrt) î x a→ y, so this case does not occur. Case 3:
x ≡ b, where b ∈ Aδ. This is in contradiction with T(BPAdrt) î x a→ y, so this
case does not occur. Case 4: x ≡ x′ ·x′′, for certain terms x′ and x′′. Then, be-
cause T(BPAdrt) î x a→ y, we either have T(BPAdrt) î x′ a→√ and y ≡ x′′, or we
have T(BPAdrt) î x′ a→ x′′′ and y ≡ x′′′ ·x′′ for some term x′′′. In the first case,
we have n(x) = n(x′ ·x′′) = n(x′) + n(x′′) + 1 > n(x′′) = n(y), and in the sec-
ond we can apply the induction hypothesis to arrive at n(x′) > n(x′′′), so we get
n(x) = n(x′ ·x′′) = n(x′) + n(x′′) + 1 > n(x′′′) + n(x′′) + 1 = n(x′′′ ·x′′) = n(y).
Case 5: x ≡ x′ + x′′, for certain terms x′ and x′′. Since T(BPAdrt) î x a→ y, nec-
essarily T(BPAdrt) î x′ a→ y or T(BPAdrt) î x′′ a→ y. Therefore, by the induction
hypothesis, n(x′) > n(y) or n(x′′) > n(y). In both cases n(x) = n(x′ + x′′) =
n(x′)+n(x′′)+1 > n(y). Case 6: x ≡ σ(x′), for a certain term x′. This is in contra-
diction with T(BPAdrt) î x a→ y, so this case does not occur. Case 7: x ≡ ν(x′), for a
certain term x′. SinceT(BPAdrt) î x a→ y, necessarilyT(BPAdrt) î x′ a→ y. Therefore,
by the induction hypothesis, n(x′) > n(y). So, n(x) = n(ν(x′)) = n(x′)+1 > n(y).
Case 8: x ≡ bx′cω, for a certain term x′. Since T(BPAdrt) î x a→ y, necessarily
T(BPAdrt) î x′ a→ y. Therefore, by the induction hypothesis, n(x′) > n(y). So,
n(x) = n(bx′cω) = n(x′)+ 1 > n(y).

(ix). Suppose that T(BPAdrt) î x σ→ y. Case 1: x ≡ δ̇. This is in contradiction with
T(BPAdrt) î x σ→ y, so this case does not occur. Case 2: x ≡ a, where a ∈ Aδ. This is
in contradiction with T(BPAdrt) î x σ→ y, so this case does not occur. Case 3: x ≡ a,
where a ∈ Aδ. BecauseT(BPAdrt) î x σ→ y, it must be the case that x ≡ y, and we are
done. Case 4: x ≡ x′·x′′, for certain terms x′ and x′′. Then necessarily, x′ σ→ x′′′ and
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y ≡ x′′′·x′′ for some term x′′′. We now can apply the induction hypothesis to arrive at
x′ ≡ x′′′ or n(x′) > n(x′′′), so we get x ≡ y or n(x) = n(x′·x′′) = n(x′)+n(x′′)+1 >
n(x′′′) + n(x′′) + 1 = n(x′′′ ·x′′) = n(y). Case 5: x ≡ x′ + x′′, for certain terms
x′ and x′′. As T(BPAdrt) î x σ→ y, necessarily (1) T(BPAdrt) î x′ σ→ y, x′′ σ3 , or, (2)
T(BPAdrt) î x′ σ3 , x′′ σ→ y, or, (3) T(BPAdrt) î x′ σ→ y′, x′′ σ→ y′′ where y ≡ y′ + y′′. In
the first case, by the induction hypothesis, n(x′) > n(y). So n(x) = n(x′ + x′′) =
n(x′) + n(x′′) + 1 > n(y). The second case is treated analogously. In the third
case, by the induction hypothesis, n(x′) > n(y′) and n(x′′) > n(y′′). So n(x) =
n(x′ + x′′) = n(x′)+ n(x′′)+ 1 > n(y′)+ n(y′′)+ 1 = n(y). Case 6: x ≡ σ(x′), for
a certain term x′. Because T(BPAdrt) î x σ→ y, it must be the case that x′ ≡ y. Then
we have n(x) = n(σ(x′)) = n(x′) + 1 = n(y) + 1 > n(y). Case 7: x ≡ ν(x′), for a
certain term x′. This is in contradiction with T(BPAdrt) î x σ→ y, so this case does
not occur. Case 8: x ≡ bx′cω, for a certain term x′. Because T(BPAdrt) î x σ→ y, it
must be the case that x ≡ y, and we are done.

�

Remark 4.3.4.8 (Towards Completeness of BPA+drt)
Note that Lemma 3.2.4.19 on page 64 now also follows as a corollary from Lemma
4.3.4.7(iii) and (iv) by the law of the excluded middle.

Theorem 4.3.4.9 (Completeness of BPA+drt)
The axiom system BPA+drt is a complete axiomatization of the set of closed BPAdrt terms
modulo bisimulation equivalence.

Proof We use the direct method described in Proof Outline 4.2.3.1 on page 70. Suppose
that s+t ∼BPAdrt

t. We then prove that BPA+drt ` s+t = t. By Theorem 4.3.4.1 we can restrict
ourselves to basic terms s and t. The proof is done with induction on n(s), using Lemma
4.3.4.7(viii)–(ix) and case distinction on the form of basic term s.

(i). s ≡ δ̇. Using Axiom A6ID we have BPA+drt ` s+ t = δ̇+ t = t + δ̇ = t.

(ii). s ≡ δ. Then we have ¬ID(s + t), because T(BPAdrt) î ¬ID(s). Since s + t ∼BPAdrt
t,

we also have T(BPAdrt) î ¬ID(t). Using Lemma 4.3.4.7(iv) we have BPA+drt ` s+ t =
δ+ t = t+ δ = t.

(iii). s ≡ a, where a ∈ A. From the deduction rules we have T(BPAdrt) î s a→
√

and
T(BPAdrt) î s+t a→

√
. Since s+t ∼BPAdrt

t we also have T(BPAdrt) î t a→
√

. By Lemma
4.3.4.7(i) we obtain BPA+drt ` t = a+ t. So, BPA+drt ` s+ t = a+ t = t.

(iv). s ≡ δ. Then δ σ→ δ. Therefore s+t σ→ s+t′ and t σ→ t′ with s+t′ ∼BPAdrt
t′. With Lemma

4.3.4.7(vi) we have BPA+drt ` t = σ(t′)+ ν(t). Two cases need to be considered:

(a) t ≡ t′. Now, s + t σ→ s + t and t σ→ t, so by Lemma 4.3.4.7(vii) we have BPA+drt `
s + t = bs+ tcω and BPA+drt ` t = btcω. So we can derive, using Proposition
3.2.4.14(i) and (iii) and Lemma 4.3.4.7(iv): BPA+drt ` s + t = bs+ tcω = bscω+
btcω= bδcω+ btcω= δ+ btcω= bδcω+ btcω= bδ+ tcω= btcω= t.
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(b) t � t′. Now, by Lemma 4.3.4.7(ix), n(t′) < n(t). Therefore, the induction hy-
pothesis is applicable: BPA+drt ` δ + t′ = t′. Consider the following computa-
tion: BPA+drt ` s+ t = δ+ t = bδcω+ t = ν(δ)+σ

(bδcω)+ t = δ+σ(δ)+ t =
σ(δ)+ t = σ(δ)+σ(t′)+ ν(t) = σ(δ+ t′)+ ν(t) = σ(t′)+ ν(t) = t.

(v). s ≡ a, where a ∈ A. Then s a→√. Therefore s+ t a→√ and, since s+ t ∼BPAdrt
t, t a→√.

Using Lemma 4.3.4.7(i) we obtain BPA+drt ` t = a+ t. We also have s σ→ s. Therefore
s+t σ→ s+t′ and t σ→ t′. From Lemma 4.3.4.7(vi) we obtain: BPA+drt ` t = σ(t′)+ν(t).
Two cases can be distinguished:

(a) t ≡ t′. Now, s + t σ→ s + t and t σ→ t, so by Lemma 4.3.4.7(vii) we have BPA+drt `
s + t = bs+ tcω and BPA+drt ` t = btcω. So we can derive, using Proposition
3.2.4.14(i) and (iii): BPA+drt ` s + t = bs+ tcω = bscω+ btcω = bacω+ btcω =
a+ btcω= bacω+ btcω= ba+ tcω= btcω= t.

(b) t � t′. Now, by Lemma 4.3.4.7(ix), n(t′) < n(t). Therefore the induction hy-
pothesis is applicable: BPA+drt ` a + t′ = t′. Consider the following computa-
tion: BPA+drt ` s+ t = a+ t = bacω+ t = ν(a)+σ

(bacω)+ t = a+σ(a)+ t =
σ(a)+ t = σ(a)+σ(t′)+ ν(t) = σ(a+ t′)+ ν(t) = σ(t′)+ ν(t) = t.

(vi). s ≡ δ·s′, where s′ is a basic term. Then we have BPA+drt ` s = δ·s′ = δ and, using
(ii), BPA+drt ` s+ t = t.

(vii). s ≡ a·s′, where a ∈ A and s′ is a basic term. From the deduction rules we obtain
T(BPAdrt) î s a→ s′ and T(BPAdrt) î s+ t a→ s′. Since s+ t ∼BPAdrt

t, we then also have
T(BPAdrt) î t a→ t′ for some t′ such that s′ ∼BPAdrt

t′. By the induction hypothesis we
have BPA+drt ` s′ = t′. From Lemma 4.3.4.7(ii) we have BPA+drt ` t = a·t′ + t. So,
BPA+drt ` s+ t = a·s′ + t = a·t′ + t = t.

(viii). s ≡ δ·s′, where s′ is a basic term. Then we have, using Proposition 3.2.4.16, BPA+drt `
s = δ·s′ = δ and, using (iv), BPA+drt ` s+ t = t.

(ix). s ≡ a · s′, where a ∈ A and s′ is a basic term. Then s a→ s′ and s + t a→ s′. Since
s + t ∼BPAdrt

t we also have t a→ t′ for some t′ such that s′ ∼BPAdrt
t′. By induction we

therefore have BPA+drt ` s′ = t′. We also have s σ→ s and s+ t σ→ s+ t′′ and t σ→ t′′. By
Lemma 4.3.4.7(ii) we have BPA+drt ` t = a·t′ + t and BPA+drt ` t = σ(t′′)+ν(t). Two
cases can be distinguished:

(a) t ≡ t′′. Now, s+ t σ→ s+ t and t σ→ t, so by Lemma 4.3.4.7(vii) we have BPA+drt `
s + t = bs+ tcω and BPA+drt ` t = btcω. So we can derive, using Proposition
3.2.4.14(i)–(iii): BPA+drt ` s + t = bs+ tcω = bscω+ btcω = ba·s′cω+ btcω =
bacω·s′ +btcω= a·s′ +btcω= bacω·s′+btcω= ba·s′cω+btcω= ba·s′ + tcω=
ba·t′ + tcω= btcω= t.

(b) t � t′′. Now, by Lemma 4.3.4.7(ix), n(t′′) < n(t). By the induction hypoth-
esis we then have BPA+drt ` s + t′′ = t′′. Consider the following computa-
tion: BPA+drt ` s + t = a·s′ + t = bacω·s′ + t =

(
ν(a)+σ (bacω))·s′ + t =

(a+σ(a))·s′+ t = a·t′+σ(a)·s′+ t = σ(a)·s′+ t = σ(a·s′)+ t = σ(s)+ t =
σ(s)+σ(t′′)+ ν(t) = σ(s+ t′′)+ ν(t) = σ(t′′)+ ν(t) = t.
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(x). s ≡ s′ + s′′, where s′ and s′′ are basic terms. Since s′ + s′′ + t ∼BPAdrt
t, we also have

s′ + t ∼BPAdrt
t and s′′ + t ∼BPAdrt

t. By the induction hypothesis we then have BPA+drt `
s′ + t = t, s′′ + t = t. So, BPA+drt ` s+ t = s′ + s′′ + t = s′ + t = t.

(xi). s ≡ σ(s′), where s′ is a basic term. From the deduction rules we have T(BPAdrt) î
σ(s′) σ→ s′ and since s + t ∼BPAdrt

t we also have T(BPAdrt) î t σ→ t′, s + t σ→ s′ + t′
for some t′ such that s′ + t′ ∼BPAdrt

t′. By Lemma 4.3.4.7(vi) we have BPA+drt ` t =
σ(t′)+ν(t). By the induction hypothesis we have BPA+drt ` s′+ t′ = t′. So, BPA+drt `
s+ t = σ(s′)+ t = σ(s′)+σ(t′)+ ν(t) = σ(s′ + t′)+ ν(t) = σ(t′)+ ν(t) = t.

�

Remark 4.3.4.10 (Completeness of BPAdrt)
Completeness of a somewhat different version of BPAdrt is also claimed (without proof)
in Section 3.5 of BAETEN AND BERGSTRA [24].

4.3.5 BPA′drt

In this section, we define a process algebra named BPA′drt, that is almost identical to
BPAdrt, except that it has five additional axioms. These are chosen such that elimina-
tion, soundness, and completeness results for BPA′drt follow as corollaries from the cor-
responding results for BPA+drt.

Definition 4.3.5.1 (Axioms of BPA′drt)
The process algebra BPA′drt is axiomatized by the axioms of BPAdrt given in Defini-
tion 3.2.4.5 on page 55, and Axioms USD1–USD5 shown in Table 4.5: BPA′drt = A1–A5 +
A6ID–A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID + ATS + USD + USD1–USD5.

bacω= a USD1

bx·ycω= bxcω·y USD2

bx+ ycω= bxcω+ bycω USD3

bσrel(x)cω= δ USD4

bδ̇cω= δ USD5

Table 4.5: Additional axioms for unbounded start delay.

☞ Axioms USD1–USD5 precisely correspond to equalities (i)–(v) of Proposition 3.2.4.14
on page 58. In this way, we obtain an axiomatization that is in many ways (elimination,
soundness, completeness) like BPA+drt, but is also purely equational, i.e., does not contain
conditional axioms or recursion principles.

Definition 4.3.5.2 (Signature, Semantics, and Basic Terms of BPA′drt)
The signature, semantics, bisimulation, bisimulation model, and basic terms of BPA′drt

are the same as those of BPAdrt.
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Corollary 4.3.5.3 (Elimination for BPA′drt)
Let t be a closed BPA′drt term. Then there is a basic term s such that BPA′drt ` t = s.

Proof In the same way as Theorem 4.3.4.1. Note that all rewriting rules of Table 4.4
correspond to derivable equalities in BPA′drt. �

Corollary 4.3.5.4 (Soundness of BPA′drt)
The set of closed BPA′drt terms modulo bisimulation equivalence is a model of BPA′drt.

Proof We use the indirect method of Proof Outline 4.2.2.2 on page 70. The result
follows directly from the soundness of BPA+drt (see Theorem 4.3.4.5 on page 94) com-
bined with the fact that Axioms USD1–USD5 are, for closed terms, derivable in BPA+drt

(see Proposition 3.2.4.14 on page 58). �

Corollary 4.3.5.5 (Completeness of BPA′drt)
The axiom system BPA′drt is a complete axiomatization of the set of closed BPA′drt terms
modulo bisimulation equivalence.

Proof We use the indirect method of Proof Outline 4.2.3.2 on page 71. Careful inspec-
tion of the dependencies between the proofs in this section reveals that the proof of The-
orem 4.3.4.9 only relies upon RSP(USD) to ensure Proposition 3.2.4.14(i)–(v). So, we obvi-
ously do not need RSP(USD) anymore if we add the corresponding Axioms USD1–USD5,
and the result follows. �

4.4 Conclusions

Since this chapter is closely related with the following chapter, we do not give conclusions
for this chapter seperately. Instead, we wil give conclusions for both chapters at the end
of Chapter 5, in Section 5.5.





5
Axioms for Concurrency

5.1 Introduction

In this chapter we will examine the various possibilities to extend the discrete-time basic
process algebras of Chapter 3 with merge operators. In Section 5.2 we will do this for the
process algebra BPA−drt–ID of Section 3.2.2, extending it with the free merge operator to
get PA−drt–ID, and with the merge operator to get ACP−drt–ID. Then we do this again, in a
different way, leading to the alternative process algebras PA−drt–ID′ and ACP−drt–ID′.

In Section 5.3 we will extend the process algebra BPA+drt, that contains delayable ac-
tions and the immediate deadlock, to define process algebras PA+drt and ACP+drt. We show
how we can replace the recursion principle of PA+drt by a set of unconditional axioms, like
we did for BPA+drt in Section 4.3.5, leading to the process algebra PA′drt. For ACP+drt we do
the same in even two ways, leading to the process algebras ACP′drt and ACP′′drt.

For all process algebras in this chapter, we give motivated axioms, a bisimulation
model, and elimination, soundness, and completeness results.

5.2 Process Algebras with Undelayable Actions

We introduce the process algebras PA−drt–ID, PA−drt–ID′, ACP−drt–ID, and ACP−drt–ID′. These
are all based on BPA−drt–ID, and hence do not contain delayable actions or the immediate
deadlock.

5.2.1 PA−drt–ID

In this section, we extend BPA−drt–ID to PA−drt–ID by introducing axioms for the left merge
that are based on the representation of BPA−drt–ID terms shown in Lemma 3.2.2.10 on
page 50. This is special, as normally new operators are axiomatized directly on the signa-
ture (like the encapsulation operator, see Axioms D1–D4 shown in Table 2.18 on page 29),
or on the basis of an inductive definition of basic terms (like the untimed left merge, see
Axioms M2–M4 shown in Table 2.12 on page 21).

105
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Note that the approach we take in this section has intriguing correspondences with
the approach taken by NICOLLIN AND SIFAKIS [154]; see Section 8.6.1 for a discussion
about the similarities and differences between the two approaches.

Definition 5.2.1.1 (Signature of PA−drt–ID)
The signature of PA−drt–ID consists of the undelayable actions {a|a ∈ A}, the undelayable
deadlock constant δ, the alternative composition operator +, the sequential composition
operator ·, the time-unit delay operator σrel, the “now” operator νrel, the free merge op-
erator ‖, and the left merge operator ‖ .

Definition 5.2.1.2 (Axioms of PA−drt–ID)
The process algebra PA−drt–ID is axiomatized by the axioms of BPA−drt–ID given in Defini-
tion 3.2.2.2 on page 47, Axioms DRTM1–DRTM4 shown in Table 5.1, and Axioms DRTM5–
DRTM6 shown in Table 5.2: PA−drt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM1–
DRTM6.

x ‖ y = x ‖ y + y ‖ x DRTM1

a ‖ x = a·x DRTM2

a·x ‖ y = a·(x ‖ y) DRTM3

(x+ y) ‖ z = x ‖ z+ y ‖ z DRTM4

Table 5.1: Axioms for free merge.

σrel(x) ‖ νrel(y) = δ DRTM5

σrel(x) ‖ (νrel(y)+σrel(z)) = σrel(x ‖ z) DRTM6

Table 5.2: Additional axioms for PA−drt–ID.

☞ Axioms DRTM1–DRTM4 are straightforward reformulations of their untimed counter-
parts M1–M4, where the untimed action a has been replaced by the undelayable action a.
So, within time-slices, i.e., between time steps, the left merge behaves as in the untimed
case.

Axioms DRTM5 and DRTM6 are more interesting. They handle the time-step behavior
of the left merge. DRTM5 expresses that when the left argument of the left merge can
only do a time step, and the right hand cannot do a time step, then the left merge ends
in undelayable deadlock, as the left argument cannot do its initial action before the right
argument does. DRTM6 expresses that when the left argument of the left merge can only
do a time step, and the right argument can do at least a time step, then the whole will do
a time step, and continue as the left merge of the respective arguments after they have
done a time step. So, the “now” part of the right argument is immaterial, as it cannot
delay its initial action until the next time slice.
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Definition 5.2.1.3 (Semantics of PA−drt–ID)
The semantics of PA−drt–ID are given by the term-deduction system T(PA−drt–ID) induced
by the deduction rules for BPA−drt–ID given in Definition 3.2.2.4 on page 48 and the de-
duction rules for the free merge shown in Table 5.3.

x a→ x′
x ‖ y a→ x′ ‖ y

y a→ y′
x ‖ y a→ x ‖ y′

x a→ x′
x ‖ y a→ x′ ‖ y

x a→√

x ‖ y a→ y
y a→√

x ‖ y a→ x
x a→√

x ‖ y a→ y

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

Table 5.3: Deduction rules for free merge.

☞ The deduction rules that do not involve time steps are the same as in the untimed
case (see Table 2.13 on page 23). The two extra rules express that the left merge and the
free merge can do a time step if and only if both their arguments can. After having done
a time step, they continue as the left merge or free merge respectively of the parts that
remain of their arguments after they themselves have done a time step.

Definition 5.2.1.4 (Bisimulation and Bisimulation Model for PA−drt–ID)
Bisimulation for PA−drt–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “PA−drt–ID” in Def-
inition 3.2.1.8 on page 45 and “BPA” by “PA−drt–ID” in Definition 2.3.1.16 on page 12.

Definition 5.2.1.5 (Basic Terms of PA−drt–ID)
If we speak of basic terms in the context of PA−drt–ID, we mean (σ,δ)-basic terms as de-
fined in Definition 3.2.2.6 on page 49.

Definition 5.2.1.6 (Number of Symbols of a PA−drt–ID Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed PA−drt–ID terms x and y, we define n(x + y) = n(x ·y) = n(x ‖ y) =
n(x ‖ y) = n(x)+ n(y)+ 1,

(iii). for a closed PA−drt–ID term x, we define n(σ(x)) = n(ν(x)) = n(x)+ 1.

Theorem 5.2.1.7 (Elimination for PA−drt–ID)
Let t be a closed PA−drt–ID term. Then there is a closed BPA−drt–ID term s such that PA−drt–ID `
s = t.
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Proof We use the direct method we described in Proof Outline 4.2.1.2 on page 68. Let t
be a closed PA−drt–ID term. The theorem is proven by induction on n(t) and case distinc-
tion on the general structure of t.

(i). t ≡ a for some a ∈ Aδ. Then t is a closed BPA−drt–ID term.

(ii). t ≡ t1+t2 for closed PA−drt–ID terms t1 and t2. By induction there are closed BPA−drt–ID
terms s1 and s2 such that PA−drt–ID ` t1 = s1 and PA−drt–ID ` t2 = s2. But then also
PA−drt–ID ` t1 + t2 = s1 + s2 and s1 + s2 is a closed BPA−drt–ID term.

(iii). t ≡ t1 ·t2 for closed PA−drt–ID terms t1 and t2. This case is treated analogously to
case (ii).

(iv). t ≡ σ(t1) for a closed PA−drt–ID term t1. This case is treated analogously to case (ii).

(v). t ≡ ν(t1) for a closed PA−drt–ID term t1. This case is treated analogously to case (ii).

(vi). t ≡ t1 ‖ t2 for closed PA−drt–ID terms t1 and t2. By induction there are closed
BPA−drt–ID terms s1 and s2 such that PA−drt–ID ` t1 = s1 and PA−drt–ID ` t2 = s2.
By Theorem 4.3.2.1, the elimination theorem for BPA−drt–ID, there are basic terms
r1 and r2 such that BPA−drt–ID ` s1 = r1 and BPA−drt–ID ` s2 = r2. But then also,
PA−drt–ID ` t1 = r1, PA−drt–ID ` t2 = r2, and PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2. We prove
this case by induction on the structure of basic term r1:

(a) r1 ≡ a for some a ∈ Aδ. Then PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = a ‖ r2 = a·r2, and
a·r2 is a closed BPA−drt–ID term.

(b) r1 ≡ a · r′1 for some a ∈ Aδ and basic term r′1. Then PA−drt–ID ` t1 ‖ t2 =
r1 ‖ r2 = a·r′1 ‖ r2 = a·(r′1 ‖ r2). By the induction hypothesis there exists a
closed BPA−drt–ID term p such that PA−drt–ID ` r′1 ‖ r2 = p. Then, PA−drt–ID `
t1 ‖ t2 = a·(r′1 ‖ r2) = a·p, and a·p is a closed BPA−drt–ID term.

(c) r1 ≡ r′1 + r′′1 for basic terms r′1 and r′′1 . Then PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2 =
(r′1 + r′′1 ) ‖ r2 = r′1 ‖ r2 + r′′1 ‖ r2. By induction there exist closed BPA−drt–ID
terms p1 and p2 such that PA−drt–ID ` r′1 ‖ r2 = p1 and PA−drt–ID ` r′′1 ‖ r2 = p2.
Then also PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = r′1 ‖ r2+r′′1 ‖ r2 = p1+p2, and p1+p2

is a closed BPA−drt–ID term.

(d) r1 ≡ σ(r′1) for a basic term r′1. By Lemma 3.2.2.10 there is a basic term r′2
such that either PA−drt–ID ` r2 = ν(r2) or PA−drt–ID ` r2 = ν(r2) + σ(r′2) with
n(r′2) < n(r2). With case analysis we obtain:

1. r2 = ν(r2). Then we have PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ r2 =
σ(r′1) ‖ ν(r2) = δ, and δ is a closed BPA−drt–ID term.

2. r2 = ν(r2)+σ(r′2) for a basic term r′2. Then PA−drt–ID ` t1 ‖ t2 = r1 ‖ r2 =
σ(r′1) ‖ r2 = σ(r′1) ‖ (ν(r2) + σ(r′2)) = σ(r′1 ‖ r′2). By the induction hy-
pothesis there is a closed BPA−drt–ID term p such that PA−drt–ID ` r′1 ‖ r′2 =
p. But then also PA−drt–ID ` t1 ‖ t2 = σ(r′1 ‖ r′2) = σ(p), and σ(p) is a
closed BPA−drt–ID term.

(vii). t ≡ t1 ‖ t2 for closed PA−drt–ID terms t1 and t2. Then PA−drt–ID ` t1 ‖ t2 = t1 ‖ t2 +
t2 ‖ t1. By (vi) there are closed BPA−drt–ID terms p1 and p2 such that PA−drt–ID `
t1 ‖ t2 = p1 and PA−drt–ID ` t2 ‖ t1 = p2. But then also PA−drt–ID ` t1 ‖ t2 =
t1 ‖ t2 + t2 ‖ t1 = p1 + p2, and p1 + p2 is a closed BPA−drt–ID term.
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�

☞ The lexicographical path ordering method is not very suitable here, as Axioms DRTM5
and DRTM6 do not fit well onto basic terms. If we would define a term-rewriting system
using these axioms, it would not have basic terms as normal forms. Would we try to fix
that by introducing additional rewriting rules, then we would easily lose strong termina-
tion.

As we will see later on, it is still possible to find a term-rewriting system for PA−drt–ID
that is both strongly terminating and has basic terms as normal forms. To prove that
this is indeed so, however, is more difficult than proving elimination directly as done
above, so in this case we have preferred the direct method for proving elimination over
the lexicographical path ordering method.

Corollary 5.2.1.8 (Elimination for PA−drt–ID)
Let t be a closed PA−drt–ID term. Then there is a basic term s such that PA−drt–ID ` s = t.
Proof This follows immediately from:

(i). The elimination theorem for PA−drt–ID (see Theorem 5.2.1.7),

(ii). the elimination theorem for BPA−drt–ID (see Theorem 4.3.2.1),

(iii). the fact that all axioms of BPA−drt–ID are also contained in PA−drt–ID.

�

Remark 5.2.1.9 (Elimination for PA−drt–ID)
Elimination for PA−drt–ID is also claimed (without proof) in Theorem 3.2 of BAETEN AND

RENIERS [35].

Theorem 5.2.1.10 (Soundness of PA−drt–ID)
The set of closed PA−drt–ID terms modulo bisimulation equivalence is a model of PA−drt–ID.

Proof We use the direct method described in Proof Outline 4.2.2.1 on page 69. We only
treat the axioms that are new for PA−drt–ID.

Axiom DRTM1 Take the relation:

R = {(s, s), (s ‖ t, t ‖ s), (s ‖ t, s ‖ t + t ‖ s)∣∣s, t ∈ C(PA−drt–ID)
}

First we look at the transitions of the left-hand side:

(i). Suppose that s ‖ t a→ p. First we look at the (s ‖ t, t ‖ s) pairs. By inspection
of the deduction rules we can conclude that either s a→ p1 and p ≡ p1 ‖ t, or
t a→ p2 and p ≡ s ‖ p2, or s a→√ and p ≡ t, or t a→√ and p ≡ s. Therefore, either
t ‖ s a→ t ‖ p1, or t ‖ s a→ p2 ‖ s, or t ‖ s a→ t, or t ‖ s a→ s respectively, and note
that (p1 ‖ t, t ‖ p1) ∈ R, (s ‖ p2, p2 ‖ s) ∈ R, (t, t) ∈ R, and (s, s) ∈ R.
Continuing with the (s ‖ t, s ‖ t+t ‖ s) pairs, we also have either s ‖ t a→ p1 ‖ t,
or t ‖ s a→ p2 ‖ s, or s ‖ t a→ t, or t ‖ s a→ s. Therefore, either s ‖ t+t ‖ s a→ p1 ‖ t,
or s ‖ t+ t ‖ s a→ p2 ‖ s, or s ‖ t+ t ‖ s a→ t, or s ‖ t+ t ‖ s a→ s respectively, and
again note that (p1 ‖ t, p1 ‖ t) ∈ R, (s ‖ p2, p2 ‖ s) ∈ R, (t, t) ∈ R, and
(s, s) ∈ R.
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(ii). Suppose that s ‖ t a→√. This case cannot occur.

(iii). Suppose that s ‖ t σ→ p. First we look at the (s ‖ t, t ‖ s) pairs. By inspection
of the deduction rules we can conclude that s σ→ p1, t σ→ p2, and p ≡ p1 ‖ p2.
Therefore, t ‖ s σ→ p2 ‖ p1, and note that (p1 ‖ p2, p2 ‖ p1) ∈ R.

Continuing with the (s ‖ t, s ‖ t+ t ‖ s) pairs, we also have s ‖ t σ→ p1 ‖ p2 and
t ‖ s σ→ p2 ‖ p1. Therefore, s ‖ t+ t ‖ s σ→ p1 ‖ p2+p2 ‖ p1, and note that (p1 ‖
p2, p1 ‖ p2 + p2 ‖ p1) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose that t ‖ s a→ p. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(ii). Suppose that t ‖ s a→√. This case cannot occur.

(iii). Suppose that t ‖ s σ→ p. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(iv). Suppose that s ‖ t+t ‖ s a→ p. By inspection of the deduction rules we can con-
clude that either s a→ p1 and p ≡ p1 ‖ t, or t a→ p2 and p ≡ p2 ‖ s, or s a→√ and
p ≡ t, or t a→√ and p ≡ s. Therefore, either s ‖ t a→ p1 ‖ t, or s ‖ t a→ s ‖ p2,
or s ‖ t a→ t, or s ‖ t a→ s respectively, and note that (p1 ‖ t, p1 ‖ t) ∈ R,
(s ‖ p2, p2 ‖ s) ∈ R, (t, t) ∈ R, and (s, s) ∈ R.

(v). Suppose that s ‖ t + t ‖ s a→√. This case cannot occur.

(vi). Suppose that s ‖ t + t ‖ s σ→ p. By inspection of the deduction rules we can
conclude that s σ→ p1, t σ→ p2, and p ≡ p1 ‖ p2 + p2 ‖ p1. Since both s and t
can perform a σ transition, we obtain s ‖ t σ→ p1 ‖ p2, and note that (p1 ‖
p2, p1 ‖ p2 + p2 ‖ p1) ∈ R.

Axiom DRTM2 Take the relation:

R = {(s, s), (a ‖ s, a·s)∣∣s ∈ C(PA−drt–ID)
}

We look at the transitions of both sides at the same time. The only possible transi-
tion of the left-hand side is a ‖ s a→ s, the only possible transition of the right-hand
side is a·s a→ s, and note that (s, s) ∈ R.

Axiom DRTM3 Take the relation:

R = {(s, s), (a·s ‖ t, a·(s ‖ t))∣∣s, t ∈ C(PA−drt–ID)
}

We look at the transitions of both sides at the same time. The only possible tran-
sition of the left-hand side is a · s ‖ t a→ s ‖ t, the only possible transition of the
right-hand side is a·(s ‖ t) a→ s ‖ t, and note that (s ‖ t, s ‖ t) ∈ R.

Axiom DRTM4 Take the relation:

R = {(s, s), ((s+ t) ‖ u, s ‖ u+ t ‖ u)∣∣s, t, u ∈ C(PA−drt–ID)
}

First we look at the transitions of the left-hand side:
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(i). Suppose (s+ t) ‖ u a→ p. By inspection of the deduction rules we can conclude
that either s a→ p1 and p ≡ p1 ‖ u, or t a→ p2 and p ≡ p2 ‖ u, or s a→√ and
p ≡ u, or t a→√ and p ≡ u. So, either s ‖ u a→ p1 ‖ u, or t ‖ u a→ p2 ‖ u, or
s ‖ u a→ u, or t ‖ u a→ u respectively. Therefore, either s ‖ u+ t ‖ u a→ p1 ‖ u, or
s ‖ u+t ‖ u a→ p2 ‖ u, or s ‖ u+t ‖ u a→ u, or s ‖ u+t ‖ u a→ u respectively, and
note that (p1 ‖ u,p1 ‖ u) ∈ R, (p2 ‖ u,p2 ‖ u) ∈ R, (u,u) ∈ R, and (u,u) ∈ R.

(ii). Suppose (s+ t) ‖ u a→√. This case cannot occur.

(iii). Suppose (s+ t) ‖ u σ→ p. Then s+ t σ→ p1, u σ→ p2, and p ≡ p1 ‖ p2. Then one of
the following situations has occurred:

(a) s σ→ p1 and t σ3 : then s ‖ u σ→ p1 ‖ p2 and t ‖ u σ
3 . Therefore, s ‖ u +

t ‖ u σ→ p1 ‖ p2, and note that (p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) s σ3 and t σ→ p1: this case is handled in the same way as the previous one.

(c) s σ→ q1, t σ→ q2, and p1 ≡ q1 + q2: then s ‖ u σ→ q1 ‖ p2 and t ‖ u σ→ q2 ‖ p2.
Therefore s ‖ u+ t ‖ u σ→ q1 ‖ p2 + q2 ‖ p2, and note that ((q1 + q2) ‖ p2,
q1 ‖ p2 + q2 ‖ p2) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose s ‖ u+t ‖ u a→ p. By inspection of the deduction rules we can conclude
that either s a→ p1 and p ≡ p1 ‖ u, or t a→ p2 and p ≡ p2 ‖ u, or s a→√ and p ≡ u,
or t a→√ and p ≡ u. Therefore, either (s+ t) ‖ u a→ p1 ‖ u, or (s+ t) ‖ u a→ p2 ‖
u, or (s + t) ‖ u a→ u, or (s + t) ‖ u a→ u, and note that (p1 ‖ u,p1 ‖ u) ∈ R,
(p2 ‖ u,p2 ‖ u) ∈ R, (u,u) ∈ R, and (u,u) ∈ R.

(ii). Suppose s ‖ u+ t ‖ u a→√. This case cannot occur.

(iii). Suppose s ‖ u+ t ‖ u σ→ p. Then this must be due to one of the following:

(a) s ‖ u σ→ p and t ‖ u σ
3 : then s σ→ q1, u σ→ q2, and p ≡ q1 ‖ q2. Therefore,

s+ t σ→ q1 and (s+ t) ‖ u σ→ q1 ‖ q2, and note that (q1 ‖ q2, q1 ‖ q2) ∈ R.

(b) s ‖ u σ
3 and t ‖ u σ→ p: this case is handled in the same way as the previous

one.

(c) s ‖ u σ→ p1, t ‖ u σ→ p2, and p ≡ p1 + p2: then s σ→ q1, t σ→ q2, u σ→ q3, p1 ≡
q1 ‖ q3, and p2 ≡ q2 ‖ q3. Therefore, s+t σ→ q1+q2 and (s+t) ‖ u σ→ (q1+
q2) ‖ q3, and note that ((q1 + q2) ‖ q3, q1 ‖ q3 + q2 ‖ q3) ∈ R.

Axiom DRTM5 Take the relation:

R = {(σ(s) ‖ ν(t),δ)∣∣s, t ∈ C(PA−drt–ID)
}

We look at the transitions of both sides at the same time. Observe that there are no
transitions possible on the left-hand side: σ(s) ‖ ν(t)3 . Also for the right-hand
side there are no transitions possible: δ3 .

Axiom DRTM6 Take the relation:

R = {(s, s), (σ(s) ‖ (ν(t)+σ(u)),σ(s ‖ u))∣∣s, t, u ∈ C(PA−drt–ID)
}

We look at the transitions of both sides at the same time. Observe that the only
possible transition of the left-hand side is σ(s) ‖ (ν(t)+ σ(u)) σ→ s ‖ u, and that
the only possible transition of the right-hand side isσ(s ‖ u) σ→ s ‖ u, and note that
(s ‖ u, s ‖ u) ∈ R.
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�

Remark 5.2.1.11 (Soundness of PA−drt–ID)
Soundness of PA−drt–ID is also claimed (without proof) in Theorem 3.3 of BAETEN AND RE-
NIERS [35].

Remark 5.2.1.12 (Conservativity etc.)
In Theorems 5.2.1.13 and 5.2.1.14 below we use the concepts operationally conservative
extension, path format , sum of term-deduction systems (denoted by ⊕), pure deduction
rules, and well-founded deduction rules. For a formal definition of these concepts and the
intuitions behind them, see Section 2.4.1 of BAETEN AND VERHOEF [37], and the references
given there.

Theorem 5.2.1.13 (Conservativity of PA−drt–ID with respect to BPA−drt–ID)
The process algebra PA−drt–ID is a conservative extension of the process algebra BPA−drt–ID.

Proof In order to prove conservativity it is sufficient to verify that the following con-
ditions are satisfied:

(i). Bisimulation equivalence is definable in terms of predicate and relation symbols
only,

(ii). BPA−drt–ID is a complete axiomatization with respect to the bisimulation equivalence
model induced by T(BPA−drt–ID) (see Theorem 4.3.2.6),

(iii). PA−drt–ID is a sound axiomatization with respect to the bisimulation equivalence
model induced by T(PA−drt–ID) (see Theorem 5.2.1.10),

(iv). T(PA−drt–ID) is an operationally conservative extension of T(BPA−drt–ID).

And in order for T(PA−drt–ID) indeed to be an operationally conservative extension of
T(BPA−drt–ID) we must verify the following conditions:

(i). T(BPA−drt–ID) is a pure, well-founded term-deduction system in path format,

(ii). T(PA−drt–ID) is a term-deduction system in path format,

(iii). T(BPA−drt–ID)⊕T(PA−drt–ID) is defined.

That the above properties hold can be trivially checked from the relevant definitions. �

Theorem 5.2.1.14 (Completeness of PA−drt–ID)
The axioms system PA−drt–ID is a complete axiomatization of the set of closed PA−drt–ID terms
modulo bisimulation equivalence.

Proof We use Verhoef’s method described in Proof Outline 4.2.3.4 on page 71. Com-
pleteness then follows immediately from:

(i). PA−drt–ID has the elimination property for BPA−drt–ID (see Theorem 5.2.1.7),

(ii). PA−drt–ID is a conservative extension of BPA−drt–ID (see Theorem 5.2.1.13).

�
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Remark 5.2.1.15 (Completeness of PA−drt–ID)
Completeness of PA−drt–ID is also claimed (without proof) in Theorem 3.3 of BAETEN AND

RENIERS [35].

5.2.2 PA−drt–ID′

In this section, we extend BPA−drt–ID to PA−drt–ID′ by introducing axioms for the free merge
that are based on an inductive definition of basic terms. As we will show, for closed
terms, all derivable equalities of PA−drt–ID′ are also derivable in PA−drt–ID, and vice versa.

Definition 5.2.2.1 (Signature of PA−drt–ID′)
The signature of PA−drt–ID′ is identical to the signature of PA−drt–ID as given in Definition
5.2.1.1; it consists of the undelayable actions {a|a ∈ A}, the undelayable deadlock con-
stant δ, the alternative composition operator +, the sequential composition operator ·, the
time-unit delay operator σrel, the “now” operator νrel, the free merge operator ‖, and the
left merge operator ‖ .

Definition 5.2.2.2 (Axioms of PA−drt–ID′)
The process algebra PA−drt–ID′ is axiomatized by the axioms of BPA−drt–ID given in Defi-
nition 3.2.2.2 on page 47, Axioms DRTM1–DRTM4 shown in Table 5.1 on page 106, and
Axioms DRTM7–DRTM11 shown in Table 5.4: PA−drt–ID′ = A1–A5 + DRT1–DRT5 + DCS1–
DCS4 + DRTM1–DRTM4 + DRTM7–DRTM11.

σrel(x) ‖ a = δ DRTM7

σrel(x) ‖ a·y = δ DRTM8

σrel(x) ‖ (a+ y) = σrel(x) ‖ y DRTM9

σrel(x) ‖ (a·y + z) = σrel(x) ‖ z DRTM10

σrel(x) ‖ σrel(y) = σrel(x ‖ y) DRTM11

Table 5.4: Additional axioms for PA−drt–ID′.

☞ The axioms of PA−drt–ID′ differ from those of PA−drt–ID only in the axiomatization of the
left merge with respect to time, i.e., in the axioms for σ(x) ‖ y. Instead of splitting y in a
“now” and a “next time slice” part, as we have did for PA−drt–ID in Table 5.2 on page 106,
we here inductively cover all forms that the y might take.

To begin with, we assume that the right argument of the left merge is a basic term,
since we have the elimination property for BPA−drt–ID, the Basic Process Algebra that un-
derlies PA−drt–ID′. Now, Axioms DRTM9 and DRTM10 strip away as many summands of
the form a or a ·y as possible from the right argument. This is motivated by the fact
that since the left argument of the left merge is σ(x), an a or a ·y summand on the
right side can never execute anyway. Then, if we started with one or more σ-summands,
these are exactly the summands that will remain, and using time-factorization and Ax-
iom DRTM11, we can rewrite the left merge into a left merge in the next time slice. If we
started with no σ-summands at all, i.e., with only a and a·y summands, then we will end
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up with exactly one such summand. Then, by Axioms DRTM7 and DRTM8, we can rewrite
the left merge into δ, as apparently there is no way for the right argument to move along
with the left argument into the next time slice.

In this way, σ(x) ‖ y is defined for all possible cases. Note that these intuitions are
only intuitions: no formal claims are made. We will prove soundness and completeness
results for PA−drt–ID′ in the remaining part of this section, without using the above intu-
itions at all.

Definition 5.2.2.3 (Semantics of PA−drt–ID′)
The semantics of PA−drt–ID′ are given by the term-deduction system T(PA−drt–ID′) which
is identical to the term-deduction system T(PA−drt–ID) given in Definition 5.2.1.3 on
page 107.

Definition 5.2.2.4 (Bisimulation and Bisimulation Model for PA−drt–ID′)
Bisimulation for PA−drt–ID′ and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “PA−drt–ID′” in Def-
inition 3.2.1.8 on page 45 and “BPA” by “PA−drt–ID′” in Definition 2.3.1.16 on page 12.

Definition 5.2.2.5 (Basic Terms of PA−drt–ID′)
If we speak of basic terms in the context of PA−drt–ID′, we mean (σ,δ)-basic terms as
defined in Definition 3.2.2.6 on page 49.

Definition 5.2.2.6 (Number of Symbols of a PA−drt–ID′ Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed PA−drt–ID′ terms x and y, we define n(x + y) = n(x ·y) = n(x ‖ y) =
n(x ‖ y) = n(x)+ n(y)+ 1,

(iii). for a closed PA−drt–ID′ term x, we define n(σ(x)) = n(ν(x)) = n(x)+ 1.

Theorem 5.2.2.7 (Elimination for PA−drt–ID′)
Let t be a closed PA−drt–ID′ term. Then there is a closed BPA−drt–ID term s such that
PA−drt–ID′ ` s = t.

Proof We use the lexicographical path ordering method we described in Proof Out-
line 4.2.1.1 on page 68. The term-rewriting system used consists of the term-rewriting
system for BPA−drt–ID shown in Table 4.2 on page 79, augmented with the additional term-
rewriting rules shown in Table 5.5 on the facing page. Note that we have added natural
number subscripts n to the left merge and free merge operators, in order to deal with
the mutually recursive nature of definition of these operators. For a description of this
technique, and a rigorous formal justification of its use, see Theorem 3.2.3 of BAETEN AND

VERHOEF [37], and the references given there. The operator·is assigned the lexicographi-
cal status of the first argument, and the following well-founded ordering on constant and
function symbols is used:

a < σ < + <·< ‖
2
< ‖2< ‖

3
< · · · < ‖ n < ‖n< ‖ n+1

< . . .
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σ(x)+σ(y)→ σ(x+ y) RDRT1

x ‖n y → x ‖ n y + y ‖ n x RDRTM1

a ‖ n x → a·x RDRTM2

a·x ‖ n+1 y → a·(x ‖n y) RDRTM3

(x+ y) ‖ n z → x ‖ n z+ y ‖ n z RDRTM4

σ(x) ‖ na→ δ RDRTM7

σ(x) ‖ na·y → δ RDRTM8

σ(x) ‖ n (a+ y) → σ(x) ‖ n y RDRTM9

σ(x) ‖ n (a·y + z) → σ(x) ‖ n z RDRTM10

σ(x) ‖ nσ(y)→ σ(x ‖ n y) RDRTM11

Table 5.5: Additional term-rewriting rules for PA−drt–ID′.

That the left-hand side of every rewriting rule is bigger than the right-hand side with
respect to the ordering �lpo , is shown by the following reductions:

σ(x)+σ(y)�lpo σ(x)+? σ(y)�lpo σ(σ(x)+? σ(y))�lpo σ(σ?(x)+σ?(y))
�lpo σ(x+ y)

x ‖n y �lpo x ‖?n y �lpo x ‖?n y + x ‖?n y
�lpo (x ‖?n y) ‖ n (x ‖?n y)+ (x ‖?n y) ‖ n (x ‖?n y)
�lpo x ‖ n y + y ‖ n x

a ‖ n x�lpo a ‖?n x�lpo (a ‖?n x)·(a ‖?n x)
�lpo a·x

a·x ‖ n+1
y �lpo a·x ‖?n+1

y �lpo (a·x ‖?n+1
y)·(a·x ‖?

n+1
y)

�lpo (a·x)·((a·x ‖?n+1
y) ‖n (a·x ‖?n+1

y))
�lpo (a·x)·(a·x ‖n y)�lpo (a·?x)·(a·?x ‖n y)
�lpo a·(x ‖n y)

(x+ y) ‖ n z�lpo (x+ y) ‖?n z�lpo (x+ y) ‖?n z+ (x+ y) ‖?n z
�lpo (x+? y) ‖ n z+ (x+? y) ‖ n z�lpo (x ‖ n z)+ (y ‖ n z)

σ(x) ‖ na�lpo σ(x) ‖?na
�lpo δ

σ(x) ‖ na·y�lpo σ(x) ‖?na·y
�lpo δ

σ(x) ‖ n (a+ y)�lpo σ(x) ‖?n (a+ y)�lpo σ(x) ‖ n (a+? y)
�lpo σ(x) ‖ n y

σ(x) ‖ n (a·y+ z)�lpo σ(x) ‖?n (a·y+ z)�lpo σ(x) ‖ n (a·y+? z)
�lpo σ(x) ‖ n z
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σ(x) ‖ nσ(y)�lpo σ(x) ‖?nσ(y)�lpo σ(σ(x) ‖?nσ(y))
�lpo σ(σ?(x) ‖ nσ

?(y))�lpo σ(x ‖ ny)

It remains to prove that every normal form of a closed PA−drt–ID′ term is a closed BPA−drt–ID
term. We prove this as follows: suppose that s is a normal form of a closed PA−drt–ID′

term, and furthermore suppose that s is not a closed BPA−drt–ID term. Now consider the
smallest subterm s′ of s that is not a closed BPA−drt–ID term. Then, s′ must be of the form
s′ ≡ s1 ‖ s2 or of the form s′ ≡ s1 ‖ s2, for closed BPA−drt–ID terms s1 and s2. By the
elimination theorem for BPA−drt–ID, Theorem 4.3.2.1 on page 79, we may assume that s1

and s2 are basic terms. Now in the first case, s′ ≡ s1 ‖ s2, clearly rewriting rule RDRTM1 is
applicable. This contradicts the assumption that s is a normal form, so this case cannot
occur. In the second case, s′ ≡ s1 ‖ s2, it is not clear at first sight that a contradiction can
be derived. So, the following cases have to be considered for basic term s1:

(i). s1 ≡ a for some a ∈ Aδ. Then rewriting rule RDRTM2 is applicable.

(ii). s1 ≡ a·s′1 for some a ∈ Aδ and closed BPA−drt–ID term s′1. Clearly, rewriting rule
RDRTM3 is applicable.

(iii). s1 ≡ s′1 + s′′1 for some closed BPA−drt–ID terms s′1 and s′′1 . This time rewriting rule
RDRTM4 is applicable.

(iv). s1 ≡ σ(s′1) for some closed BPA−drt–ID term s′1. The following cases can be consid-
ered for the general form of basic term s2:

(a) s2 ≡ a for some a ∈ Aδ. In this case rewriting rule RDRTM7 is applicable.

(b) s2 ≡ a·s′2 for some a ∈ A and basic term s′2. In this case rewriting rule RDRTM8
is applicable.

(c) s2 ≡
∑
i<m
ai·s2,i +

∑
j<n
bj +

∑
k<p
σ(s′2,k) form,n,p ∈ N, ai, bj ∈ Aδ, and s2,i and s′2,k

basic terms. In this case at least one of the rewriting rules RDRT1, RDRTM9,
RDRTM10, or RDRTM11 is applicable.

In every case a rewriting rule is applicable. Therefore s′ is not a normal form.
We see that in both cases s′ is not a normal form. But this contradicts the assumption

that s is a normal form. From this contradiction we conclude that s does not contain a
merge operator. Therefore s must be closed BPA−drt–ID term, which had to be proven. �

Corollary 5.2.2.8 (Elimination for PA−drt–ID′)
Let t be a closed PA−drt–ID′ term. Then there is a basic term s such that PA−drt–ID′ ` s = t.

Proof This follows immediately from:

(i). The elimination theorem for PA−drt–ID′ (see Theorem 5.2.2.7),

(ii). the elimination theorem for BPA−drt–ID (see Theorem 4.3.2.1),

(iii). the fact that all axioms of BPA−drt–ID are also contained in PA−drt–ID′.

�
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Remark 5.2.2.9 (Elimination for PA−drt–ID′)
Elimination for a slightly different version of PA−drt–ID′ is also claimed (without proof) in
Theorem 3.4.2 of BAETEN AND VERHOEF [37] (where PA−drt–ID′ is called PAδdt).

Definition 5.2.2.10 (Axiom Ground Equivalence of Process Algebras)
Two process algebras P and P′ are called axiom ground equivalent if they have identical
signatures, and the same equalities over closed terms hold in both systems, i.e., for all
closed terms s and t over the common signature we have P ` s = t iff P′ ` s = t.

Definition 5.2.2.11 (Deduction-System Ground Equivalence of Process Algebras)
Two process algebras P and P′, for which term-deduction systems T(P) and T(P′) and
corresponding bisimulation models M and M′ are given, are called deduction-system
ground equivalent if they have identical signatures, and the same equalities over closed
terms hold in both bisimulation models, i.e., for all closed terms s and t over the common
signature we haveM î s ∼P t iffM′ î s ∼P′ t.

Definition 5.2.2.12 (Ground Equivalence of Process Algebras)
Two process algebras P and P′ that are both axiom ground equivalent and deduction-
system ground equivalent are simply called ground equivalent .

Theorem 5.2.2.13 (Axiom Ground Equivalence of PA−drt–ID and PA−drt–ID′)
For all closed PA−drt–ID terms s and t we have PA−drt–ID ` s = t if and only if PA−drt–ID′ `
s = t.

Proof It suffices to show that, for closed terms, every axiom of PA−drt–ID′ is deriv-
able from the axioms of PA−drt–ID, and vice versa, that, for closed terms, every axiom of
PA−drt–ID is derivable from the axioms of PA−drt–ID′. We can restrict ourselves to the ax-
ioms that are not shared by both process algebras.

Part I

First, we show that Axioms DRTM7–DRTM11 of PA−drt–ID′ are derivable in PA−drt–ID:

Axiom DRTM7

PA−drt–ID ` σ(x) ‖ a = δ

Consider the following derivation:

PA−drt–ID ` σ(x) ‖ a = σ(x) ‖ ν(a) = δ

Axiom DRTM8

PA−drt–ID ` σ(x) ‖ a·y = δ

Consider the following derivation:

PA−drt–ID ` σ(x) ‖ a·y = σ(x) ‖ ν(a)·y = σ(x) ‖ ν(a·y) = δ
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Axiom DRTM9

PA−drt–ID ` σ(x) ‖ (a+ y) = σ(x) ‖ y

By the Lemma 3.2.2.10, there is a basic terms s such that either PA−drt–ID ` y = ν(y)
or PA−drt–ID ` y = ν(y)+σ(s). So, there are two cases to be distinguished.

(i). PA−drt–ID ` y = ν(y). Then we have:

PA−drt–ID ` σ(x) ‖ (a+ y) =
σ(x) ‖ (a+ ν(y)) =
σ(x) ‖ (ν(a)+ ν(y)) =
σ(x) ‖ ν(a+ y) =
δ =
σ(x) ‖ ν(y) =
σ(x) ‖ y

(ii). PA−drt–ID ` y = ν(y)+σ(s). Then we have:

PA−drt–ID ` σ(x) ‖ (a+ y) =
σ(x) ‖ (a+ ν(y)+σ(s)) =
σ(x) ‖ (ν(a)+ ν(y)+σ(s)) =
σ(x) ‖ (ν(a+ y)+σ(s)) =
σ(x) ‖ σ(s) =
σ(x) ‖ (ν(y)+σ(s)) =
σ(x) ‖ y

Axiom DRTM10

PA−drt–ID ` σ(x) ‖ (a·y + z) = σ(x) ‖ z

Handled in the same way as the previous case.

Axiom DRTM11

PA−drt–ID ` σ(x) ‖ σ(y) = σ(x ‖ y)

Consider the following derivation: PA−drt–ID ` σ(x) ‖ σ(y) = σ(x) ‖ (δ+σ(y)) =
σ(x) ‖ (ν(δ)+σ(y)) = σ(x ‖ y).

Part II

Secondly, we show that Axioms DRTM5–DRTM6 of PA−drt–ID are derivable in PA−drt–ID′:

Axiom DRTM5

PA−drt–ID′ ` σ(x) ‖ ν(y) = δ
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Use the general form of basic term y. Take:

y ≡
∑
i<m
ai·ti +

∑
j<n
bj +

∑

k<p
σ(uk)

for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms ti and uk. Then we have:

PA−drt–ID′ `
σ(x) ‖ ν(y) =

σ(x) ‖ ν

∑
i<m
ai·ti +

∑
j<n
bj +

∑

k<p
σ(uk)


 =

σ(x) ‖

∑
i<m
ν(ai·ti)+

∑
j<n
ν(bj)+

∑

k<p
ν(σ(uk))


 =

σ(x) ‖

∑
i<m
ν(ai)·ti +

∑
j<n
ν(bj)+

∑

k<p
ν(σ(uk))


 =

σ(x) ‖

∑
i<m
ai·ti +

∑
j<n
bj +

∑

k<p
δ


 =

σ(x) ‖

∑
i<m
ai·ti +

∑
j<n
bj + δ


 =

σ(x) ‖ δ =
δ

Axiom DRTM6

PA−drt–ID′ ` σ(x) ‖ (ν(y)+σ(z)) = σ(x ‖ z)

Use the general form of basic term y. Take:

y ≡
∑
i<m
ai·ti +

∑
j<n
bj +

∑

k<p
σ(uk)

for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms ti and uk. Then we have:

PA−drt–ID′ `
σ(x) ‖ (ν(y)+σ(z)) =

σ(x) ‖

ν


∑
i<m
ai·ti +

∑
j<n
bj +

∑

k<p
σ(uk)


+σ(z)


 =

σ(x) ‖

∑
i<m
ν(ai·ti)+

∑
j<n
ν(bj)+

∑

k<p
ν(σ(uk))+σ(z)


 =

σ(x) ‖

∑

i<m
ν(ai)·ti +

∑

j<n
ν(bj)+

∑

k<p
ν(σ(uk))+σ(z)


 =
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σ(x) ‖

∑
i<m
ai·ti +

∑
j<n
bj +

∑

k<p
δ+σ(z)


 =

σ(x) ‖

∑
i<m
ai·ti +

∑
j<n
bj +σ(z)


 =

σ(x) ‖ σ(z) =
σ(x ‖ z)

�

Theorem 5.2.2.14 (Deduction-System Ground Equivalence of PA−drt–ID and PA−drt–ID′)
PA−drt–ID and PA−drt–ID′ are deduction-system ground equivalent.

Proof Both T(PA−drt–ID) and T(PA−drt–ID′) have the same signature and the same set of
deduction rules, so trivially the same equalities hold between closed terms in the respec-
tive bisimulation models. �

Theorem 5.2.2.15 (Soundness and Completeness)
Let P and P′ be two process algebras, with corresponding bisimulation structures M and
M′, that are ground equivalent. Then P is a sound axiomatization of M iff P′ is a sound
axiomatization ofM′. Furthermore, P is a complete axiomatization ofM iff P′ is a complete
axiomatization of M′.

Proof First we prove the claim regarding soundness. Suppose that P is a sound axiom-
atization of M. Let s and t be closed terms of P′, and suppose that P′ ` s = t. By the
axiom ground equivalence of P and P′ we obtain P ` s = t. Using that P is a sound ax-
iomatization ofM we have thatM î s ∼P t. By the deduction-system ground equivalence
of P and P′ it follows thatM′ î s ∼P′ t. The proof in the other direction is analogous.

The second part of the theorem, regarding completeness, is proven in the same way.
�

Remark 5.2.2.16 (Soundness and Completeness versus Elimination)
Note that it is useless to extend Theorem 5.2.2.15 to include an elimination result, as
in general elimination is used to prove axiom ground equivalence between P and P′. In
the proof of Theorem 5.2.2.13 on page 117, for example, we use elimination to allow
ourselves to restrict the proof to basic terms.

Corollary 5.2.2.17 (Soundness of PA−drt–ID′)
The set of closed PA−drt–ID′ terms modulo bisimulation equivalence is a model of PA−drt–ID′.

Proof We use the ground equivalence method described in Proof Outline 4.2.2.3 on
page 70. The proof then follows immediately from the following observations and The-
orem 5.2.2.15:

(i). The process algebras PA−drt–ID and PA−drt–ID′ are ground equivalent (see Theorems
5.2.2.13 and 5.2.2.14),

(ii). Soundness of PA−drt–ID (see Theorem 5.2.1.10).

�
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Remark 5.2.2.18 (Soundness of PA−drt–ID′)
Soundness of a slightly different version of PA−drt–ID′ is also claimed (without proof) in
Theorem 3.4.3 of BAETEN AND VERHOEF [37] (where PA−drt–ID′ is called PAδdt).

Corollary 5.2.2.19 (Completeness of PA−drt–ID′)
The axiom system PA−drt–ID′ is a complete axiomatization of the set of closed PA−drt–ID′ terms
modulo bisimulation equivalence.

Proof We use the ground equivalence method described in Proof Outline 4.2.3.3 on
page 71. The proof then follows immediately from the following observations and The-
orem 5.2.2.15:

(i). The process algebras PA−drt–ID and PA−drt–ID′ are ground equivalent (see Theorems
5.2.2.13 and 5.2.2.14),

(ii). Completeness of PA−drt–ID (see Theorem 5.2.1.14).

�

Remark 5.2.2.20 (Completeness of PA−drt–ID′)
Completeness of a slightly different version of PA−drt–ID′ is also claimed (without proof)
in Theorem 3.4.5 of BAETEN AND VERHOEF [37] (where PA−drt–ID′ is called PAδdt).

5.2.3 ACP−drt–ID

In this section, we modify PA−drt–ID by extending the free merge to a merge, where the
axioms for the communication merge are based on the σ/ν-representation of BPA−drt–ID
terms shown in Lemma 3.2.2.10 on page 50. The resulting process algebra is called
ACP−drt–ID.

Definition 5.2.3.1 (Signature of ACP−drt–ID)
The signature of ACP−drt–ID consists of the undelayable actions {a|a ∈ A}, the undelayable
deadlock constant δ, the alternative composition operator +, the sequential composition
operator ·, the time-unit delay operator σrel, the “now” operator νrel, the merge operator
‖, the left merge operator ‖ , the communication merge operator |, and the encapsulation
operator ∂H.

Definition 5.2.3.2 (Axioms of ACP−drt–ID)
The process algebra ACP−drt–ID is axiomatized by the axioms of PA−drt–ID given in Def-
inition 5.2.1.2 on page 106 minus Axiom DRTM1, plus the Axioms DRTCM1–DRTCM5,
DRTCM12–DRTCM13, DRTCF and DRTD1–DRTD5 shown in Table 5.6 on the next page,
and Axioms DRTCM6–DRTCM7 shown in Table 5.7 on the following page: ACP−drt–ID =
A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM2–DRTM6 + DRTCM1–DRTCM7 + DRTCM12–
DRTCM13 + DRTCF + DRTD1–DRTD5.

☞ Axioms DRTCM1–DRTCM4, DRTCM12, DRTCM13, DRTCF, and DRTD1–DRTD4 are
straightforward reformulations of their untimed counterparts, Axioms CM1–CM6, CF,
and D1–D4 from Table 2.18 on page 29.
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x ‖ y = x ‖ y + y ‖ x+ x | y DRTCM1

a | b·x = (a | b)·x DRTCM2

a·x | b = (a | b)·x DRTCM3

a·x | b·y = (a | b)·(x ‖ y) DRTCM4

σrel(x) |σrel(y) = σrel(x | y) DRTCM5

(x+ y) | z = x | z+ y | z DRTCM12

x | (y + z) = x | y + x | z DRTCM13

a | b = c if γ(a,b) = c DRTCF

∂H(a) = a if a ∉ H DRTD1

∂H(a) = δ if a ∈ H DRTD2

∂H(x+ y) = ∂H(x)+ ∂H(y) DRTD3

∂H(x·y) = ∂H(x)·∂H(y) DRTD4

∂H(σrel(x)) = σrel(∂H(x)) DRTD5

Table 5.6: Axioms for merge and encapsulation.

σrel(x) | νrel(y) = δ DRTCM6

νrel(x) |σrel(y) = δ DRTCM7

Table 5.7: Additional axioms for ACP−drt–ID.

Axiom DRTCM5 expresses that the time-unit delay operator distributes over the com-
munication merge (due to the fact that time steps do not communicate and time fac-
torization). Axioms DRTCM6 and DRTCM7 express that if one side of a communication
merge must do its first action in the current time slice and the other side cannot do an
action in the current time slice, the communication merge collapses to an undelayable
deadlock, as no communication between the initial actions of both sides is possible. Ax-
iom DRTD5 expresses that the encapsulation commutes with the time-unit delay opera-
tor: time cannot be encapsulated.

Definition 5.2.3.3 (Semantics of ACP−drt–ID)
The semantics of ACP−drt–ID are given by the term-deduction system T(ACP−drt–ID) in-
duced by the deduction rules for PA−drt–ID given in Definition 5.2.1.3 on page 107, the
deduction rules for the merge shown in Table 5.8 on the next page, and the deduction
rules for the encapsulation shown in Table 5.9 on the facing page.

☞ These deduction rules are identical to their untimed counterparts, save the additional
two rules that express that a communication merge and an encapsulation can only do a
time step if their arguments can.
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x a→ x′, y b→ y′, γ(a,b) = c
x ‖ y c→ x′ ‖ y′

x a→ x′, y b→ y′, γ(a,b) = c
x | y c→ x′ ‖ y′

x a→ x′, y b→√, γ(a,b) = c
x ‖ y c→ x′

x a→ x′, y b→√, γ(a,b) = c
x | y c→ x′

x a→√, y b→ y′, γ(a,b) = c
x ‖ y c→ y′

x a→√, y b→ y′, γ(a,b) = c
x | y c→ y′

x a→√, y b→√, γ(a,b) = c
x ‖ y c→√

x a→√, y b→√, γ(a,b) = c
x | y c→√

x σ→ x′, y σ→ y′
x | y σ→ x′ | y′

Table 5.8: Additional deduction rules for merge.

x a→ x′, a ∉ H
∂H(x)

a→ ∂H(x′)
x a→√, a ∉ H
∂H(x)

a→√
x σ→ x′

∂H(x)
σ→ ∂H(x′)

Table 5.9: Deduction rules for encapsulation.

Definition 5.2.3.4 (Bisimulation and Bisimulation Model for ACP−drt–ID)
Bisimulation for ACP−drt–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “ACP−drt–ID” in
Definition 3.2.1.8 on page 45 and “BPA” by “ACP−drt–ID” in Definition 2.3.1.16 on page 12.

Definition 5.2.3.5 (Basic Terms of ACP−drt–ID)
If we speak of basic terms in the context of ACP−drt–ID, we mean (σ,δ)-basic terms as
defined in Definition 3.2.2.6 on page 49.

Definition 5.2.3.6 (Number of Symbols of an ACP−drt–ID Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed ACP−drt–ID terms x and y, we define n(x + y) = n(x·y) = n(x ‖ y) =
n(x ‖ y) = n(x | y) = n(x)+ n(y)+ 1,

(iii). for a closed ACP−drt–ID term x, we define n(σ(x)) = n(ν(x)) = n(∂H(x)) = n(x)+1.
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Theorem 5.2.3.7 (Elimination for ACP−drt–ID)
Let t be a closed ACP−drt–ID term. Then there is a closed BPA−drt–ID term s such that
ACP−drt–ID ` s = t.

Proof We use the direct method described in Proof Outline 4.2.1.2 on page 68. Let t be a
closed ACP−drt–ID term. The theorem is proven by induction on n(t) and case distinction
on the general structure of t.

(i). t ≡ a for some a ∈ Aδ. Then t is a closed BPA−drt–ID term.

(ii). t ≡ t1 + t2 for closed ACP−drt–ID terms t1 and t2. By induction there are closed
BPA−drt–ID terms s1 and s2 such that ACP−drt–ID ` t1 = s1 and ACP−drt–ID ` t2 = s2.
But then also ACP−drt–ID ` t1 + t2 = s1 + s2 and s1 + s2 is a closed BPA−drt–ID term.

(iii). t ≡ t1 ·t2 for closed ACP−drt–ID terms t1 and t2. This case is treated analogously to
case (ii).

(iv). t ≡ σ(t1) for a closed ACP−drt–ID term t1. This case is treated analogously to case
(ii).

(v). t ≡ ν(t1) for a closed ACP−drt–ID term t1. This case is treated analogously to case
(ii).

(vi). t ≡ t1 ‖ t2 for closed ACP−drt–ID terms t1 and t2. By induction there are closed
BPA−drt–ID terms s1 and s2 such that ACP−drt–ID ` t1 = s1 and ACP−drt–ID ` t2 = s2.
By Theorem 4.3.2.1, the elimination theorem for BPA−drt–ID, there are basic terms
r1 and r2 such that BPA−drt–ID ` s1 = r1 and BPA−drt–ID ` s2 = r2. But then also,
ACP−drt–ID ` t1 = r1, ACP−drt–ID ` t2 = r2, and ACP−drt–ID ` t1 ‖ t2 = r1 ‖ r2. We
prove this case by induction on the structure of basic term r1:

(a) r1 ≡ a for some a ∈ Aδ. Then ACP−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = a ‖ r2 = a·r2,
and a·r2 is a closed BPA−drt–ID term.

(b) r1 ≡ a ·r′1 for some a ∈ Aδ and basic term r′1. Then ACP−drt–ID ` t1 ‖ t2 =
r1 ‖ r2 = a·r′1 ‖ r2 = a·(r′1 ‖ r2). By the induction hypothesis there exists a
closed BPA−drt–ID term p such that ACP−drt–ID ` r′1 ‖ r2 = p. Then, ACP−drt–ID `
t1 ‖ t2 = a·(r′1 ‖ r2) = a·p, and a·p is a closed BPA−drt–ID term.

(c) r1 ≡ r′1 + r′′1 for basic terms r′1 and r′′1 . Then ACP−drt–ID ` t1 ‖ t2 = r1 ‖ r2 =
(r′1 + r′′1 ) ‖ r2 = r′1 ‖ r2 + r′′1 ‖ r2. By induction there exist closed BPA−drt–ID
terms p1 and p2 such that ACP−drt–ID ` r′1 ‖ r2 = p1 and ACP−drt–ID ` r′′1 ‖ r2 =
p2. Then also ACP−drt–ID ` t1 ‖ t2 = r′1 ‖ r2 + r′′1 ‖ r2 = p1 + p2, and p1 + p2 is
a closed BPA−drt–ID term.

(d) r1 ≡ σ(r′1) for a basic term r′1. By Lemma 3.2.2.10 there is a basic term r′2 such
that either ACP−drt–ID ` r2 = ν(r2) or ACP−drt–ID ` r2 = ν(r2) + σ(r′2) with
n(r′2) < n(r2). With case analysis we obtain:

1. r2 = ν(r2). Then ACP−drt–ID ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ r2 =
σ(r′1) ‖ ν(r2) = δ, and δ is a closed BPA−drt–ID term.
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2. r2 = ν(r2) + σ(r′2) for a basic term r′2. Then ACP−drt–ID ` t1 ‖ t2 =
r1 ‖ r2 = σ(r′1) ‖ t2 = σ(r′1) ‖ r2 = σ(r′1) ‖ (ν(r2)+σ(r′2)) = σ(r′1 ‖ r′2).
By the induction hypothesis there is a closed BPA−drt–ID term p such that
ACP−drt–ID ` r′1 ‖ r′2 = p. But then also ACP−drt–ID ` t1 ‖ t2 = σ(r′1 ‖ r′2) =
σ(p), and σ(p) is a closed BPA−drt–ID term.

(vii). t ≡ t1 | t2 for closed ACP−drt–ID terms t1 and t2. By induction there are closed
BPA−drt–ID terms s1 and s2 such that ACP−drt–ID ` t1 = s1 and ACP−drt–ID ` t2 = s2.
By Theorem 4.3.2.1, the elimination theorem for BPA−drt–ID, there are basic terms
r1 and r2 such that BPA−drt–ID ` s1 = r1 and BPA−drt–ID ` s2 = r2. But then also,
ACP−drt–ID ` t1 = r1, ACP−drt–ID ` t2 = r2, and ACP−drt–ID ` t1 | t2 = r1 | r2. We prove
this case by simultaneous induction on the structure of basic terms r1 and r2. We
examine all possible cases:

(a) r1 ≡ a and r2 ≡ b for some a,b ∈ Aδ. Suppose that γ(a,b) = c. Then we have
ACP−drt–ID ` t1 | t2 = r1 | r2 = a | b = c, and c is a closed BPA−drt–ID term.

(b) r1 ≡ a and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic term r′2. Suppose that
γ(a,b) = c. Then we have ACP−drt–ID ` t1 | t2 = r1 | r2 = a | b·r′2 = c·r′2, and
c·r′2 is a closed BPA−drt–ID term.

(c) r1 ≡ a·r′1 and r2 ≡ b for some a, b ∈ Aδ and some basic term r′1. This case is
treated symmetrically to the previous case.

(d) r1 ≡ a·r′1 and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic terms r′1 and r′2.
Suppose that γ(a,b) = c. Then we have ACP−drt–ID ` t1|t2 = r1|r2 = a·r′1|b·r′2 =
c·(r′1 ‖ r′2). By the induction hypothesis there exists a closed BPA−drt–ID term
s′ such that ACP−drt–ID ` r′1 ‖ r′2 = s′. So ACP−drt–ID ` t1 | t2 = c·(r′1 ‖ r′2) = c·s′,
and c·s′ is a closed BPA−drt–ID term.

(e) r1 ≡ r′1 + r′′1 for some basic terms r′1 and r′′1 , and r2 is of arbitrary form. Then
ACP−drt–ID ` t1 | t2 = r1 | r2 = (r′1 + r′′1 ) | r2 = r′1 | r2 + r′′1 | r2. By the induction
hypothesis there exist closed BPA−drt–ID terms p1 and p2 such that ACP−drt–ID `
r′1 | r2 = p1 and ACP−drt–ID ` r′′1 | r2 = p2. So, we have ACP−drt–ID ` t1 | t2 =
r′1 | r2 + r′′1 | r2 = p1 + p2, and p1 + p2 is a closed BPA−drt–ID term.

(f) r1 is of arbitrary form and r2 ≡ r′2 + r′′2 for some basic terms r′2 and r′′2 . This
case is treated symmetrically to the previous case.

(g) r1 ≡ σ(r′1) for some basic term r′1, and r2 is of arbitrary form. By Lemma
3.2.2.10 there is a basic term r′2 such that either ACP−drt–ID ` r2 = ν(r2) or
ACP−drt–ID ` r2 = ν(r2) + σ(r′2) with n(r′2) < n(r2). With case analysis we
obtain:

1. r2 = ν(r2). Then ACP−drt–ID ` t1 | t2 = r1 | r2 = σ(r′1) | ν(r2) = δ, and δ is
a closed BPA−drt–ID term.

2. r2 = ν(r2)+σ(r′2) for a basic term r′2. Then ACP−drt–ID ` t1 | t2 = r1 | r2 =
σ(r′1) | (ν(r2) + σ(r′2)) = σ(r′1) | σ(r′2) = σ(r′1 | r′2). By the induction
hypothesis there is a closed BPA−drt–ID termp such that ACP−drt–ID ` r′1|r′2 =
p. But then also ACP−drt–ID ` t1|t2 = σ(r′1|r′2) = σ(p), andσ(p) is a closed
BPA−drt–ID term.

(h) r1 is of arbitrary form and r2 ≡ σ(r′2) for some basic term r′2. This case is
treated symmetrically to the previous case.
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(viii). t ≡ t1 ‖ t2 for closed ACP−drt–ID terms t1 and t2. Then ACP−drt–ID ` t1 ‖ t2 = t1 ‖ t2+
t2 ‖ t1+ t1 | t2. By (vi) and (vii) there are closed BPA−drt–ID terms p1, p2, and p3, such
that ACP−drt–ID ` t1 ‖ t2 = p1, ACP−drt–ID ` t2 ‖ t1 = p2, and ACP−drt–ID ` t1 | t2 = p3.
But then also ACP−drt–ID ` t1 ‖ t2 = t1 ‖ t2 + t2 ‖ t1 + t1 | t2 = p1 + p2 + p3, and
p1 + p2 + p3 is a closed BPA−drt–ID term.

(ix). t ≡ ∂H(t1) for a closed ACP−drt–ID term t1. By induction there is a closed BPA−drt–ID
term s1 such that ACP−drt–ID ` t1 = s1. By Theorem 4.3.2.1, the elimination theorem
for BPA−drt–ID, there is a basic term r1 such that BPA−drt–ID ` s1 = r1. But then also,
ACP−drt–ID ` t1 = r1, and ACP−drt–ID ` ∂H(t1) = ∂H(r1). We prove this case by
induction on the structure of basic term r1:

(a) r1 ≡ a for some a ∈ Aδ. Suppose a ∉ H. Then, ACP−drt–ID ` ∂H(t1) = ∂H(r1) =
∂H(a) = a, and a is a closed BPA−drt–ID term. Otherwise, a ∈ H, and we get
ACP−drt–ID ` ∂H(t1) = ∂H(r1) = ∂H(a) = δ, and δ is a closed BPA−drt–ID term.

(b) r1 ≡ a·r′1 for some a ∈ Aδ and basic term r′1. Then ACP−drt–ID ` ∂H(t1) =
∂H(r1) = ∂H(a·r′1) = ∂H(a)·∂H(r′1). By the induction hypothesis there ex-
ist closed BPA−drt–ID terms p1 and p2 such that ACP−drt–ID ` ∂H(a) = p1 and
ACP−drt–ID ` ∂H(r′1) = p2. Then also ACP−drt–ID ` ∂H(t1) = ∂H(a)·∂H(r′1) =
p1·p2, and p1·p2 is a closed BPA−drt–ID term.

(c) r1 ≡ r′1 + r′′1 for closed BPA−drt–ID terms r′1 and r′′1 . Then ACP−drt–ID ` ∂H(t1) =
∂H(r1) = ∂H(r′1 + r′′1 ) = ∂H(r′1) + ∂H(r′′1 ). By the induction hypothesis there
exist closed BPA−drt–ID terms p1 and p2 such that ACP−drt–ID ` ∂H(r′1) = p1 and
ACP−drt–ID ` ∂H(r′′1 ) = p2. Then also ACP−drt–ID ` ∂H(t1) = ∂H(r′1)+ ∂H(r′′1 ) =
p1 + p2, and p1 + p2 is a closed BPA−drt–ID term.

(d) r1 ≡ σ(r′1) for some closed BPA−drt–ID term r′1. Then ACP−drt–ID ` ∂H(t1) =
∂H(r1) = ∂H(σ(r′1)) = σ(∂H(r′1)). By the induction hypothesis there ex-
ist a closed BPA−drt–ID term p such that ACP−drt–ID ` ∂H(r′1) = p. Then also
ACP−drt–ID ` ∂H(t1) = σ(∂H(r′1)) = σ(p), andσ(p) is a closed BPA−drt–ID term.

�

Corollary 5.2.3.8 (Elimination for ACP−drt–ID)
Let t be a closed ACP−drt–ID term. Then there is a basic term s such that ACP−drt–ID ` s = t.

Proof This follows immediately from:

(i). The elimination theorem for ACP−drt–ID (see Theorem 5.2.3.7),

(ii). the elimination theorem for BPA−drt–ID (see Theorem 4.3.2.1),

(iii). the fact that all axioms of BPA−drt–ID are also contained in ACP−drt–ID.

�
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Remark 5.2.3.9 (Elimination for ACP−drt–ID)
Elimination for ACP−drt–ID is also claimed (without proof) in Theorem 4.2 of BAETEN AND

RENIERS [35].

Theorem 5.2.3.10 (Soundness of ACP−drt–ID)
The set of closed ACP−drt–ID terms modulo bisimulation equivalence is a model of ACP−drt–ID.

Proof We use the direct method described in Proof Outline 4.2.2.1 on page 69. We only
treat the the axioms which are added to BPA−drt–ID to obtain ACP−drt–ID.

Axioms DRTM2–DRTM6 The proofs for the soundness of these axioms with respect to
PA−drt–ID that are given in Theorem 5.2.1.10 remain valid, since there are no new
deduction rules dealing with ‖ .

Axiom DRTCM1 Take the relation:

R = {(s, s), (s ‖ t, t ‖ s), (s ‖ t, s ‖ t+ t ‖ s+ s | t)∣∣s, t ∈ C(ACP−drt–ID)
}

First we look at the transitions of the left-hand side:

(i). Suppose that s ‖ t a→ p. First we look at the (s ‖ t, t ‖ s) pairs. By inspection of
the deduction rules we distinguish the following cases:

(a) s a→ p1 and p ≡ p1 ‖ t. Then t ‖ s a→ t ‖ p1, and (p1 ‖ t, t ‖ p1) ∈ R
(b) t a→ p2 and p ≡ s ‖ p2. Then t ‖ s a→ p2 ‖ s, and (s ‖ p2, p2 ‖ s) ∈ R.

(c) s a→√ and p ≡ t. Then t ‖ s a→ t, and (t, t) ∈ R.

(d) t a→√ and p ≡ s. Then t ‖ s a→ s, and (s, s) ∈ R.

(e) s b→ p1, t c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then t ‖ s a→ p2 ‖ p1, and
(p1 ‖ p2, p2 ‖ p1) ∈ R.

(f) s b→√, t c→ p2, γ(b, c) = a, and p ≡ p2. Then t ‖ s a→ p2, and (p2, p2) ∈ R.

(g) s b→ p1, t c→√, γ(b, c) = a, and p ≡ p1. Then t ‖ s a→ p1, and (p1, p1) ∈ R.

We continue with the (s ‖ t, s ‖ t+ t ‖ s) pairs. Distinguishing the same cases
as above, we derive:

(a) s ‖ t a→ p1 ‖ t. Then s ‖ t+ t ‖ s+ s | t a→ p1 ‖ t, and (p1 ‖ t, p1 ‖ t) ∈ R.

(b) t ‖ s a→ p2 ‖ s. Then s ‖ t + t ‖ s+ s | t a→ p2 ‖ s, and (s ‖ p2, p2 ‖ s) ∈ R.

(c) s ‖ t a→ t. Then s ‖ t + t ‖ s+ s | t a→ t, and (t, t) ∈ R.

(d) t ‖ s a→ s. Then s ‖ t + t ‖ s+ s | t a→ s, and (s, s) ∈ R.

(e) s | t a→ p1 ‖ p2. Then s ‖ t+ t ‖ s+s | t a→ p1 ‖ p2, and (p1 ‖ p2, p1 ‖ p2) ∈ R.

(f) s | t a→ p2. Then s ‖ t + t ‖ s+ s | t a→ p2, and (p2, p2) ∈ R.

(g) s | t a→ p1. Then s ‖ t + t ‖ s+ s | t a→ p1, and (p1, p1) ∈ R.

(ii). Suppose that s ‖ t a→√. By inspection of the deduction rules we can con-
clude that s b→√, t c→√, and γ(b, c) = a. Therefore, t ‖ s a→√, and continuing,
s | t a→√, so s ‖ t + t ‖ s+ s | t a→√.

(iii). Suppose that s ‖ t σ→ p. By inspection of the deduction rules we can conclude
that s σ→ p1 and t σ→ p2 and p ≡ p1 ‖ p2. Therefore, t ‖ s σ→ p2 ‖ p1, and
note that (p1 ‖ p2, p2 ‖ p1) ∈ R. Continuing, we also have s ‖ t σ→ p1 ‖ p2,
t ‖ s σ→ p2 ‖ p1, and s | t σ→ p1 | p2. Therefore, s ‖ t + t ‖ s + s | t σ→ p1 ‖ p2 +
p2 ‖ p1 + p1 | p2, and note that (p1 ‖ p2, p1 ‖ p2 + p2 ‖ p1 + p1 | p2) ∈ R.
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Secondly, we look at the transitions of the right-hand side:

(i). Suppose that t ‖ s a→ p. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(ii). Suppose that t ‖ s a→√. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(iii). Suppose that t ‖ s σ→ p. This case is handled in the same way as the corre-
sponding (sub)case for the left-hand side shown above.

(iv). Suppose that s ‖ t + t ‖ s + s | t a→ p. By inspection of the deduction rules we
distinguish the following cases:

(a) s a→ p1 and p ≡ p1 ‖ t. Then s ‖ t a→ p1 ‖ t, and (p1 ‖ t, p1 ‖ t) ∈ R.

(b) t a→ p2 and p ≡ p2 ‖ s. Then s ‖ t a→ s ‖ p2, and (s ‖ p2, p2 ‖ s) ∈ R.

(c) s a→√ and p ≡ t. Then s ‖ t a→ t, and (t, t) ∈ R.

(d) t a→√ and p ≡ s. Then s ‖ t a→ s, and (s, s) ∈ R.

(e) s b→ p1, t c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then s ‖ t a→ p1 ‖ p2, and
(p1 ‖ p2, p1 ‖ p2) ∈ R.

(f) s b→√, t c→ p2, γ(b, c) = a, and p ≡ p2. Then s ‖ t a→ p2, and (p2, p2) ∈ R.

(g) s b→ p1, t c→√, γ(b, c) = a, and p ≡ p1. Then s ‖ t a→ p1, and (p1, p1) ∈ R.

(v). Suppose that s ‖ t + t ‖ s + s | t a→√. By inspection of the deduction rules we
can conclude that s b→√, t c→√, and γ(b, c) = a. Therefore, s ‖ t a→√.

(vi). Suppose that s ‖ t + t ‖ s + s | t σ→ p. By inspection of the deduction rules we
can conclude that s σ→ p1, t σ→ p2, and p ≡ p1 ‖ p2+p2 ‖ p1+p1 |p2. Since both
s and t can perform a σ transition, we obtain s ‖ t σ→ p1 ‖ p2, and note that
(p1 ‖ p2, p1 ‖ p2 + p2 ‖ p1 + p1 | p2) ∈ R.

Axiom DRTCM2 Take the relation:

R = {(s, s), (a | b·s, (a | b)·s)∣∣s ∈ C(ACP−drt–ID)
}

We look at the transitions of both sides at the same time. First, if γ(a,b) = δ there
are no transitions possible on either side, and we are done. Otherwise, suppose
γ(a,b) = c. Then the only possible transition on the left-hand side is a·s | b c→ s,
and the only possible transition on the right-hand side is (a|b)·s c→ s, and note that
(s, s) ∈ R.

Axiom DRTCM3 Take the relation:

R = {(s, s), (a·s | b, (a | b)·s)∣∣s ∈ C(ACP−drt–ID)
}

This axiom is treated symmetrically to the previous axiom.

Axiom DRTCM4 Take the relation:

R = {(s, s), (a·s | b·t, (a | b)·(s ‖ t))∣∣s, t ∈ C(ACP−drt–ID)
}

We look at the transitions of both sides at the same time. First, if γ(a,b) = δ there
are no transitions possible on either side, and we are done. Otherwise, suppose
γ(a,b) = c. Then the only possible transition on the left-hand side is a·s|b·t c→ s ‖ t,
and the only possible transition on the right-hand side is (a |b)·(s ‖ t) c→ s ‖ t, and
note that (s ‖ t, s ‖ t) ∈ R.
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Axiom DRTCM5 Take the relation:

R = {(σ(s) |σ(t),σ(s | t))∣∣s, t ∈ C(ACP−drt–ID)
}

We look at the transitions of both sides at the same time. The only possible tran-
sition of the left-hand side is σ(s) |σ(t) σ→ s | t, and the only possible transition of
the right-hand side is σ(s | t) σ→ s | t, and note that (s | t, s | t) ∈ R.

Axiom DRTCM6 Take the relation:

R = {(σ(s) | ν(t),δ)∣∣s, t ∈ C(ACP−drt–ID)
}

We look at the transitions of both sides at the same time. Observe that there are no
transitions possible on the left-hand side: σ(s) | ν(t)3 . Also for the right-hand
side there are no transitions possible: δ3 .

Axiom DRTCM7 Take the relation:

R = {(ν(s) |σ(t),δ)∣∣s, t ∈ C(ACP−drt–ID)
}

This axiom is treated symmetrically to the previous axiom.

Axiom DRTCM12 Take the relation:

R = {(s, s), ((s+ t) | u, s | u+ t | u)∣∣s, t, u ∈ C(ACP−drt–ID)
}

First we look at the transitions of the left-hand side:

(i). Suppose that (s+t)|u a→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s b→ p1, u c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then s | u a→ p1 ‖ p2, so also
s | u+ t | u a→ p1 ‖ p2, and note that (p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) t b→ p1, u c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. This case is treated symmet-
rically to the previous case.

(c) s b→√, u c→ p2, γ(b, c) = a, and p ≡ p2. Then s | u a→ p2, so also s | u +
t | u a→ p2, and note that (p2, p2) ∈ R.

(d) t b→√, u c→ p2, γ(b, c) = a, and p ≡ p2. This case is treated symmetrically
to the previous case.

(e) s b→ p1, u c→√, γ(b, c) = a, and p ≡ p1. Then s | u a→ p1, so also s | u +
t | u a→ p1, and note that (p1, p1) ∈ R.

(f) t b→ p1, u c→√, γ(b, c) = a, and p ≡ p1. This case is treated symmetrically
to the previous case.

(ii). Suppose that (s+t)|u a→√. By inspection of the deduction rules we distinguish
the following cases:

(a) s b→√, u c→√, and γ(b, c) = a. Then s | u a→√, so also s | u+ t | u a→√.

(b) t b→√, u c→√, and γ(b, c) = a. This case is treated symmetrically to the
previous case.

(iii). Suppose that (s+t)|u σ→ p. By inspection of the deduction rules we distinguish
the following cases:
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(a) s σ→ p1, t σ3 , u σ→ p2, and p ≡ p1 | p2. Then s | u σ→ p1 | p2 and t | u σ
3 , so

s | u+ t | u σ→ p1 | p2, and note that (p1 | p2, p1 | p2) ∈ R.

(b) s σ3 , t σ→ p1, u σ→ p2, and p ≡ p1 | p2. This case is treated symmetrically to
the previous case.

(c) s σ→ p1, t σ→ p2, u σ→ p3, and p ≡ (p1 + p2) | p3. Then s | u σ→ p1 | p3 and
t|u σ→ p2|p3, so s|u+t|u σ→ p1|p3+p2|p3, and note that ((p1+p2)|p3, p1|p3+
p2 | p3) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose that s|u+t|u a→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s b→ p1, u c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then s + t b→ p1, so (s +
t) | u a→ p1 ‖ p2, and note that (p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) t b→ p1, u c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. This case is treated symmet-
rically to the previous case.

(c) s b→√, u c→ p2, γ(b, c) = a, and p ≡ p2. Then s+ t b→√, so (s+ t) | u a→ p2,
and note that (p2, p2).

(d) t b→√, u c→ p2, γ(b, c) = a, and p ≡ p2. This case is treated symmetrically
to the previous case.

(e) s b→ p1, u c→√, γ(b, c) = a, and p ≡ p1. Then s+ t b→ p1, so (s+ t) | u a→ p1,
and note that (p1, p1).

(f) t b→ p1, u c→√, γ(b, c) = a, and p ≡ p1. This case is treated symmetrically
to the previous case.

(ii). Suppose that s|u+t|u a→√. By inspection of the deduction rules we distinguish
the following cases:

(a) s b→√, u c→√, and γ(b, c) = a. Then s+ t b→√, so (s+ t) | u a→√.

(b) t b→√, u c→√, and γ(b, c) = a. This case is treated symmetrically to the
previous case.

(iii). Suppose that s|u+t|u σ→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s σ→ p1, t σ3 , u σ→ p2, and p ≡ p1 |p2. Then s+ t σ→ p1, so (s+ t) |u σ→ p1 |p2,
and note that (p1 | p2, p1 | p2) ∈ R.

(b) s σ3 , t σ→ p1, u σ→ p2, and p ≡ p1 | p2. This case is treated symmetrically to
the previous case.

(c) s σ→ p1, t σ→ p2, u σ→ p3, and p ≡ p1 | p3 + p2 | p3. Then s + t σ→ p1 + p2, so
(s+t) |u σ→ (p1+p2) |p3, and note that ((p1+p2) |p3, p1 |p3+p2 |p3) ∈ R.

Axiom DRTCM13 Take the relation:

R = {(s, s), (s | (t+ u), s | t + s | u)∣∣s, t, u ∈ C(ACP−drt–ID)
}

This axiom is treated symmetrically to the previous axiom.

Axiom DRTCF Take the relation:

R = {(a | b, c)∣∣a,b, c ∈ Aδ and γ(a,b) = c}
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We look at the transitions of both sides at the same time. If c ≠ δ, the only possible
transition of the left-hand side is a | b c→√, and the only possible transition of the
right-hand side is c c→√. If c = δ, there are no transitions possible on either side.

Axiom DRTD1 Take the relation:

R = {(∂H(a), a)|a ∈ Aδ and a ∉ H}

We look at the transitions of both sides at the same time. The only possible tran-
sition of the left-hand side is ∂H(a)

a→√, and the only possible transition of the
right-hand side is a a→√.

Axiom DRTD2 Take the relation:

R = {(∂H(a), δ)|a ∈ Aδ and a ∈ H}

We look at the transitions of both sides at the same time. Observe that there are no
transitions possible on the left-hand side: ∂H(a)3 . Also for the right-hand side
there are no transitions possible: δ3 .

Axiom DRTD3 Take the relation:

R = {(s, s), (∂H(s+ t),∂H(s)+ ∂H(t))
∣∣s, t ∈ C(ACP−drt–ID)

}

First we look at the transitions of the left-hand side:

(i). Suppose that∂H(s+t) a→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s a→ p1 and p ≡ ∂H(p1). Then we have ∂H(s)
a→ ∂H(p1), so also ∂H(s) +

∂H(t)
a→ ∂H(p1), and note that (∂H(p1), ∂H(p1)) ∈ R.

(b) t a→ p2 and p ≡ ∂H(p2). Then we have ∂H(t)
a→ ∂H(p2), so also ∂H(s) +

∂H(t)
a→ ∂H(p2), and note that (∂H(p2), ∂H(p2)) ∈ R.

(ii). Suppose that ∂H(s + t) a→
√

. By inspection of the deduction rules we distin-
guish the following cases:

(a) s a→√. Then we have ∂H(s)
a→√, so also ∂H(s)+ ∂H(t) a→√.

(b) t a→√. Then we have ∂H(t)
a→√, so also ∂H(s)+ ∂H(t) a→√.

(iii). Suppose that∂H(s+t) σ→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s σ→ p1, t σ3 , and p ≡ ∂H(p1). Then we have ∂H(s)
σ→ ∂H(p1) and ∂H(t)

σ
3 ,

so also ∂H(s)+ ∂H(t) σ→ ∂H(p1), and note that (∂H(p1), ∂H(p1)) ∈ R.

(b) s σ3 , t σ→ p2, and p ≡ ∂H(p2). Then we have ∂H(t)
σ→ ∂H(p2) and ∂H(s)

σ
3 ,

so also ∂H(s)+ ∂H(t) σ→ ∂H(p2), and note that (∂H(p2), ∂H(p2)) ∈ R.

(c) s σ→ p1, t σ→ p2, and p ≡ ∂H(p1 + p2). Then we have ∂H(s)
σ→ ∂H(p1) and

∂H(t)
σ→ ∂H(p2), so also ∂H(s)+ ∂H(t) σ→ ∂H(p1)+ ∂H(p2), and note that

(∂H(p1 + p2), ∂H(p1)+ ∂H(p2)) ∈ R.

Secondly, we look at the transitions of the right-hand side:
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(i). Suppose that ∂H(s)+ ∂H(t) a→ p. By inspection of the deduction rules we dis-
tinguish the following cases:

(a) s a→ p1 and p ≡ ∂H(p1). Then we have ∂H(s + t) a→ ∂H(p1), and note that
(∂H(p1), ∂H(p1)) ∈ R.

(b) t a→ p2 and p ≡ ∂H(p2). Then we have ∂H(s + t) a→ ∂H(p2), and note that
(∂H(p2), ∂H(p2)) ∈ R.

(ii). Suppose that ∂H(s)+∂H(t) a→√. By inspection of the deduction rules we dis-
tinguish the following cases:

(a) s a→√. Then we have ∂H(s+ t) a→√.

(b) t a→√. Then we have ∂H(s+ t) a→√.

(iii). Suppose that ∂H(s)+ ∂H(t) σ→ p.

(a) s σ→ p1, t σ3 , and p ≡ ∂H(p1). Then we have ∂H(s+ t) σ→ ∂H(p1), and note
that (∂H(p1), ∂H(p1)) ∈ R.

(b) s σ3 , t σ→ p2, and p ≡ ∂H(p2). Then we have ∂H(s+ t) σ→ ∂H(p2), and note
that (∂H(p2), ∂H(p2)) ∈ R.

(c) s σ→ p1, t σ→ p2, and p ≡ ∂H(p1)+∂H(p2). Then we have ∂H(s+t) σ→ ∂H(p1+
p2), and note that (∂H(p1 + p2), ∂H(p1)+ ∂H(p2)) ∈ R.

Axiom DRTD4 Take the relation:

R = {(s, s), (∂H(s·t),∂H(s)·∂H(t))
∣∣s, t ∈ C(ACP−drt–ID)

}

First we look at the transitions of the left-hand side:

(i). Suppose that ∂H(s·t) a→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s a→ p1 and p ≡ ∂H(p1·t). Then we have ∂H(s)
a→ ∂H(p1), so also ∂H(s)·

∂H(t)
a→ ∂H(p1)·∂H(t), and note that (∂H(p1·t),∂H(p1)·∂H(t)) ∈ R.

(b) s a→√ and p ≡ ∂H(t). Then ∂H(s)
a→√, so also ∂H(s)·∂H(t) a→ ∂H(t), and

note that (∂H(t),∂H(t)) ∈ R

(ii). Suppose that ∂H(s·t) a→
√

. This case cannot occur.

(iii). Suppose that ∂H(s·t) σ→ p. Then necessarily s σ→ p1 and p ≡ ∂H(p1 ·t). Then
we have ∂H(s)

σ→ ∂H(p1), so also ∂H(s)·∂H(t) σ→ ∂H(p1)·∂H(t), and note that
(∂H(p1·t),∂H(p1)·∂H(t)) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose that ∂H(s)·∂H(t) a→ p. By inspection of the deduction rules we distin-
guish the following cases:

(a) s a→ p1 and p ≡ ∂H(p1)·∂H(t). Then we have ∂H(s·t) a→ ∂H(p1·t), and note
that (∂H(p1·t),∂H(p1)·∂H(t)) ∈ R.

(b) s a→√ and p ≡ ∂H(t). Then we have ∂H(s · t) a→ ∂H(t), and note that
(∂H(t), ∂H(t)) ∈ R

(ii). Suppose that ∂H(s)·∂H(t) a→
√

. This case cannot occur.
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(iii). Suppose that ∂H(s)·∂H(t) σ→ p. Then necessarily s σ→ p1 and p ≡ ∂H(p1)·∂H(t).
Then we have ∂H(s·t) σ→ ∂H(p1·t), and note that (∂H(p1·t), ∂H(p1)·∂H(t)) ∈ R.

Axiom DRTD5 Take the relation:

R = {(s, s), (∂H(σ(s)),σ(∂H(s))
∣∣s ∈ C(ACP−drt–ID)

}

We look at the transitions of both sides at the same time. The only possible transi-
tion of the left-hand side is ∂H(σ(s))

σ→ ∂H(s), and the only possible transition of
the right-hand side is σ(∂H(s))

σ→ ∂H(s), and note that (∂H(s), ∂H(s)) ∈ R.

�

Remark 5.2.3.11 (Soundness of ACP−drt–ID)
Soundness of ACP−drt–ID is also claimed (without proof) in Theorem 4.2 of BAETEN AND

RENIERS [35].

Theorem 5.2.3.12 (Conservativity of ACP−drt–ID with respect to BPA−drt–ID)
The process algebra ACP−drt–ID is a conservative extension of the process algebra BPA−drt–ID.

Proof In order to prove conservativity it is sufficient to verify that the following con-
ditions are satisfied:

(i). Bisimulation equivalence is definable in terms of predicate and relation symbols
only,

(ii). BPA−drt–ID is a complete axiomatization with respect to the bisimulation equivalence
model induced by T(BPA−drt–ID) (see Theorem 4.3.2.6),

(iii). ACP−drt–ID is a sound axiomatization with respect to the bisimulation equivalence
model induced by T(ACP−drt–ID) (see Theorem 5.2.3.10),

(iv). T(ACP−drt–ID) is an operationally conservative extension of T(BPA−drt–ID).

And in order for T(ACP−drt–ID) indeed to be an operationally conservative extension of
T(BPA−drt–ID) we must verify the following conditions:

(i). T(BPA−drt–ID) is a pure, well-founded term-deduction system in path format,

(ii). T(ACP−drt–ID) is a term-deduction system in path format,

(iii). T(BPA−drt–ID)⊕T(ACP−drt–ID) is defined.

That the above properties hold can be trivially checked from the relevant definitions. �

Theorem 5.2.3.13 (Completeness of ACP−drt–ID)
The axiom system ACP−drt–ID is a complete axiomatization of the set of closed ACP−drt–ID
terms modulo bisimulation equivalence.

Proof We use Verhoef’s method described in Proof Outline 4.2.3.4 on page 71. Com-
pleteness then follows immediately from:

(i). ACP−drt–ID has the elimination property for BPA−drt–ID (see Theorem 5.2.3.7),

(ii). ACP−drt–ID is a conservative extension of BPA−drt–ID (see Theorem 5.2.3.12).

�
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Remark 5.2.3.14 (Completeness of ACP−drt–ID)
Completeness of ACP−drt–ID is also claimed (without proof) in Theorem 4.2 of BAETEN AND

RENIERS [35].

5.2.4 ACP−drt–ID′

In this section, we modify PA−drt–ID′ by extending the free merge to a merge, where the ax-
ioms for the communication merge are based on the inductive definition of basic terms.
The resulting process algebra is called ACP−drt–ID′.

Definition 5.2.4.1 (Signature of ACP−drt–ID′)
The signature of ACP−drt–ID′ is identical to the signature of ACP−drt–ID as given in Defini-
tion 5.2.3.1; it consists of the undelayable actions {a|a ∈ A}, the undelayable deadlock
constant δ, the alternative composition operator +, the sequential composition operator ·,
the time-unit delay operator σrel, the “now” operator νrel, the merge operator ‖, the left
merge operator ‖ , the communication merge operator |, and the encapsulation operator
∂H.

Definition 5.2.4.2 (Axioms of ACP−drt–ID′)
The process algebra ACP−drt–ID′ is axiomatized by the axioms of PA−drt–ID′ given in Def-
inition 5.2.2.2 on page 113 minus Axiom DRTM1, plus the Axioms DRTCM1–DRTCM5,
DRTCM12–DRTCM13, DRTCF, and DRTD1–DRTD5 shown in Table 5.6 on page 122, and
the Axioms DRTCM8–DRTCM11 that are shown in Table 5.10: ACP−drt–ID′ = A1–A5 +
DRT1–DRT5 + DCS1–DCS4 + DRTM2–DRTM4 + DRTM7–DRTM11 + DRTCM1–DRTCM5 +
DRTCM8–DRTCM13 + DRTCF + DRTD1–DRTD5.

a |σrel(x) = δ DRTCM8

σrel(x) | a = δ DRTCM9

a·x |σrel(y) = δ DRTCM10

σrel(x) | a·y = δ DRTCM11

Table 5.10: Additional axioms for ACP−drt–ID′.

☞ Axioms DRTCM8–DRTCM11 all express that if one side of a communication merge
must do its first action in the current time slice and the other side cannot do an action in
the current time slice, the communication merge collapses to an undelayable deadlock, as
no communication between the initial actions of both sides is possible. Note that this is
exactly the same motivation we provided for Axioms DRTCM6 and DRTCM7. Intuitively,
both groups of axioms are interchangeable.

Definition 5.2.4.3 (Semantics of ACP−drt–ID′)
The semantics of ACP−drt–ID′ are given by the term-deduction systemT(ACP−drt–ID′)which
is identical to the term-deduction system T(ACP−drt–ID) given in Definition 5.2.3.3 on
page 122.
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Definition 5.2.4.4 (Bisimulation and Bisimulation Model for ACP−drt–ID′)
Bisimulation for ACP−drt–ID′ and the corresponding bisimulation model are defined in the
same way as for BPA−drt–δ and BPA respectively. Replace “BPA−drt–δ” by “ACP−drt–ID′” in
Definition 3.2.1.8 on page 45 and “BPA” by “ACP−drt–ID′” in Definition 2.3.1.16 on page 12.

Definition 5.2.4.5 (Basic Terms of ACP−drt–ID′)
If we speak of basic terms in the context of ACP−drt–ID′, we mean (σ,δ)-basic terms as
defined in Definition 3.2.2.6 on page 49.

Definition 5.2.4.6 (Number of Symbols of an ACP−drt–ID′ Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). For a ∈ Aδ, we define n(a) = 1,

(ii). for closed ACP−drt–ID′ terms x and y, we define n(x + y) = n(x·y) = n(x ‖ y) =
n(x ‖ y) = n(x | y) = n(x)+ n(y)+ 1,

(iii). for a closed ACP−drt–ID′ term x, we define n(σ(x)) = n(ν(x)) = n(∂H(x)) = n(x)+
1.

Theorem 5.2.4.7 (Elimination for ACP−drt–ID′)
Let t be a closed ACP−drt–ID′ term. Then there is a closed BPA−drt–ID term s such that
ACP−drt–ID′ ` s = t.

Proof We use the lexicographical path ordering method we described in Proof Out-
line 4.2.1.1 on page 68. The term-rewriting system used consists of the term-rewriting
system for BPA−drt–ID shown in Table 4.2 on page 79, augmented with the additional term-
rewriting rules shown in Table 5.11, Table 5.12, and Table 5.13 on page 137. Note that
we have added natural number subscripts n to the merge operators, in order to deal with
the mutually recursive nature of definition of these operators. For a description of this
technique, and a rigorous formal justification of its use, see Theorem 3.2.3 of BAETEN

AND VERHOEF [37], and the references given there.
The operator · is assigned the lexicographical status of the first argument, and the

following well-founded ordering on constant and function symbols is used:

a < σ < + <·< ∂H < ‖
2
, |2 < ‖2< ‖

3
, |3 < · · · < ‖ n , |n < ‖n< ‖ n+1

, |n+1 < . . .

That the left-hand side of every rewriting rule is bigger than the right-hand side with
respect to the ordering �lpo , is shown by the following reductions:

x ‖n y �lpo x ‖?n y �lpo x ‖?n y+ x ‖?n y �lpo x ‖?n y + x ‖?n y + x ‖?n y
�lpo (x ‖?n y) ‖ n (x ‖?n y)+ (x ‖?n y) ‖ n (x ‖?n y)+ (x ‖?n y) |n(x ‖?n y)
�lpo x ‖ ny + y ‖ n x+ x |ny

a |nb�lpo a |?n b
�lpo c

a |nb·x�lpo a |?n b·x�lpo (a |?n b·x)·(a |?n b·x)�lpo (a |nb·?x)·(b·x)
�lpo (a |nb)·(b·x)�lpo (a |nb)·?(b·x)�lpo (a |nb)·(b·?x)
�lpo (a |nb)·x
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σ(x)+σ(y)→ σ(x+ y) RDRT1

x ‖n y → x ‖ n y + y ‖ n x+ x |ny RDRTCM1

a ‖ n x→ a·x RDRTM2

a·x ‖ n+1 y → a·(x ‖n y) RDRTM3

(x+ y) ‖ n z → x ‖ n z+ y ‖ n z RDRTM4

σ(x) ‖ na→ δ RDRTM7

σ(x) ‖ na·y → δ RDRTM8

σ(x) ‖ n (a+ y) → σ(x) ‖ n y RDRTM9

σ(x) ‖ n (a·y+ z)→ σ(x) ‖ n z RDRTM10

σ(x) ‖ nσ(y)→ σ(x ‖ ny) RDRTM11

Table 5.11: Additional term-rewriting rules for ACP−drt–ID′, Part I.

a·x |nb�lpo a·x |?n b�lpo (a·x |?n b)·(a·x |?n b)�lpo (a·?x |nb)·(a·x)
�lpo (a |nb)·(a·x)�lpo (a |nb)·?(a·x)�lpo (a |nb)·(a·?x)
�lpo (a |nb)·x

a·x |n+1b·y�lpo a·x |?n+1
b·y �lpo (a·x |?n+1

b·y)·(a·x |?
n+1
b·y)

�lpo (a·x |?n+1
b·y)·((a·x |?

n+1
b·y) ‖n (a·x |?n+1

b·y))
�lpo (a·?x |n+1b·?y)·((a·x |?n+1

b·y) ‖n (a·x |?n+1
b·y))

�lpo (a |n+1b)·(a·x ‖n b·y)�lpo (a |n+1b)·(a·?x ‖n b?·y)
�lpo (a |n+1b)·(x ‖n y)

σ(x) |nσ(y)�lpo σ(x) |?n σ(y)�lpo σ(σ(x) |?n σ(y))
�lpo σ(σ?(x) |nσ?(y))�lpo σ(x |ny)

a |nσ(x)�lpo a |?n σ(x)
�lpo δ

σ(x) |na�lpo σ(x) |?n a
�lpo δ

a·x |nσ(y)�lpo a·x |?n σ(y)
�lpo δ

σ(x) |na·y�lpo σ(x) |?n a·y
�lpo δ

(x+ y) |nz�lpo (x+ y) |?n z�lpo (x+ y) |?n z+ (x+ y) |?n z
�lpo (x+? y) |nz+ (x+? y) |nz�lpo (x |nz)+ (y |nz)

x |n(y + z)�lpo x |?n (y + z)�lpo x |?n (y + z)+ x |?n (y+ z)
�lpo x |n(y+? z)+ x |n(y+? z)�lpo x |n(y)+ x |n(z)
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a |nb→ c if γ(a,b) = c RDRTCF

a |nb·x→ (a |nb)·x RDRTCM2

a·x |nb→ (a |nb)·x RDRTCM3

a·x |n+1b·y → (a |n+1b)·(x ‖n y) RDRTCM4

σ(x) |nσ(y)→ σ(x |ny) RDRTCM5

a |nσ(x)→ δ RDRTCM8

σ(x) |na→ δ RDRTCM9

a·x |nσ(y)→ δ RDRTCM10

σ(x) |na·y → δ RDRTCM11

(x+ y) |nz → x |nz+ y |nz RDRTCM12

x |n(y + z)→ x |ny + x |nz RDRTCM13

Table 5.12: Additional term-rewriting rules for ACP−drt–ID′, Part II.

∂H(a)→ a RDRTD1

∂H(a)→ δ RDRTD2

∂H(x+ y) → ∂H(x)+ ∂H(y) RDRTD3

∂H(x·y)→ ∂H(x)·∂H(y) RDRTD4

∂H(σ(x))→ σ(∂H(x)) RDRTD5

Table 5.13: Additional term-rewriting rules for ACP−drt–ID′, Part III.

∂H(a)�lpo ∂?H(a)
�lpo a

∂H(a)�lpo ∂?H(a)
�lpo δ

∂H(x+ y)�lpo ∂?H(x+ y)�lpo ∂?H(x+ y)+ ∂?H(x+ y)�lpo ∂H(x+? y)+ ∂H(x+? y)
�lpo ∂H(x)+ ∂H(y)

∂H(x·y)�lpo ∂?H(x·y)�lpo ∂?H(x·y)·∂?H(x·y)�lpo ∂H(x·?y)·∂H(x·?y)
�lpo ∂H(x)·∂H(y)

∂H(σ(x))�lpo ∂?H(σ(x))�lpo σ(∂?H(σ(x)))�lpo σ(∂H(σ?(x)))
�lpo σ(∂H(x))

Note that we do not give reductions for RDRT1 and RDRTM2–RDRTM11, as these already
have been given in the proof of Theorem 5.2.2.7 on page 114, and since the new ordering
is a proper extension of the old one, these proofs remain valid.
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It remains to prove that every normal form of a closed ACP−drt–ID′ term is a closed
BPA−drt–ID term. We prove this as follows: suppose that s is a normal form of a closed
ACP−drt–ID′ term, and furthermore suppose that s is not a closed BPA−drt–ID term. Now
consider the smallest subterm s′ of s that is not a closed BPA−drt–ID term. Then, s′ must be
of the form s′ ≡ s1 ‖ s2, of the form s′ ≡ s1 ‖ s2, of the form s′ ≡ s1 |s2, or of the form s′ ≡
∂H(s1), for closed BPA−drt–ID terms s1 and s2. By the elimination theorem for BPA−drt–ID,
Theorem 4.3.2.1 on page 79, we may assume that s1 and s2 are basic terms. Now in the
first case, s′ ≡ s1 ‖ s2, clearly rewriting rule RDRTCM1 is applicable. This contradicts
the assumption that s is a normal form, so this case cannot occur. That the second case,
s′ ≡ s1 ‖ s2, cannot occur is proven in the same way as already done in the proof of
the elimination theorem for PA−drt–ID′, Theorem 5.2.2.7 on page 114. In the fourth case,
s′ ≡ ∂H(s1), always one of the rewriting rules RDRTD1–RDRTD5 is applicable, so this
case cannot occur either. Finally, it remains to derive a contradiction for the third case,
s′ ≡ s1 | s2. The following cases can be considered for basic terms s1 and s2 (for some
a,b ∈ Aδ and basic terms s′1, s′′1 , s′2, s

′′
2 ):

(i). If s1 ≡ a and s2 ≡ b we can apply RDRTCF.

(ii). If s1 ≡ a and s2 ≡ b·s′2, we can apply RDRTCM2.

(iii). If s1 ≡ a and s2 ≡ σ(s′2), we can apply RDRTCM8.

(iv). If s1 ≡ a·s′1 and s2 ≡ b, we can apply RDRTCM3.

(v). If s1 ≡ a·s′1 and s2 ≡ b·s′2, we can apply RDRTCM4.

(vi). If s1 ≡ a·s′1 and s2 ≡ σ(s′2), we can apply RDRTCM10.

(vii). If s1 ≡ σ(s′1) and s2 ≡ b, we can apply RDRTCM9.

(viii). If s1 ≡ σ(s′1) and s2 ≡ b·s′2, we can apply RDRTCM11.

(ix). If s1 ≡ σ(s′1) and s2 ≡ σ(s′2), we can apply RDRTCM5.

(x). If s1 ≡ s′1 + s′′1 and s2 is of an arbitrary form, we can apply RDRTCM12.

(xi). If s1 is of an arbitrary form and s2 ≡ s′2 + s′′2 , we can apply RDRTCM13.

This sums up all possible sixteen cases (with seven cases thrown together in (x). and (xi).).
In all of these cases we can apply one of the rewriting rules, so s′ is not a normal form.
This contradicts the assumption that s is a normal form. From this contradiction we con-
clude that s does not contain a merge operator. Therefore, s must be a closed BPA−drt–ID
term, which had to be proven. �

Corollary 5.2.4.8 (Elimination for ACP−drt–ID′)
Let t be a closed ACP−drt–ID′ term. Then there is a basic term s such that ACP−drt–ID′ ` s = t.

Proof This follows immediately from:

(i). The elimination theorem for ACP−drt–ID′ (see Theorem 5.2.4.7),

(ii). the elimination theorem for BPA−drt–ID (see Theorem 4.3.2.1),
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(iii). the fact that all axioms of BPA−drt–ID are also contained in ACP−drt–ID′.

�

Remark 5.2.4.9 (Elimination for ACP−drt–ID′)
Elimination for a slightly different version of ACP−drt–ID′ is also claimed (without proof)
in Theorem 3.6.4 of BAETEN AND VERHOEF [37], (where ACP−drt–ID′ is called ACPdt).

Theorem 5.2.4.10 (Axiom Ground Equivalence of ACP−drt–ID and ACP−drt–ID′)
For all closed ACP−drt–ID terms s and t we have ACP−drt–ID ` s = t if and only if ACP−drt–ID′ `
s = t.

Proof It suffices to show that, for closed terms, every axiom of ACP−drt–ID′ is deriv-
able from the axioms of ACP−drt–ID, and vice versa, that, for closed terms, every axiom
of ACP−drt–ID is derivable from the axioms of ACP−drt–ID′. We can restrict ourselves to the
axioms that are not shared by both theories. Furthermore, the proofs regarding Axioms
DRTM5–DRTM11 that are given in Theorem 5.2.2.13 on page 117, with respect to PA−drt–ID
and PA−drt–ID′, remain valid with respect to ACP−drt–ID and ACP−drt–ID′.

Part I

First, we show that Axioms DRTCM8–DRTCM11 of ACP−drt–ID′ are derivable in ACP−drt–ID:

Axiom DRTCM8

ACP−drt–ID ` a |σ(x) = δ

Consider the following derivation:

ACP−drt–ID ` a |σ(x) = ν(a) |σ(x) = δ

Axiom DRTCM9

ACP−drt–ID ` σ(x) | a = δ

This axiom is treated symmetrically to the previous axiom.

Axiom DRTCM10

ACP−drt–ID ` a·x |σ(y) = δ

Consider the following derivation:

ACP−drt–ID ` a·x |σ(y) = ν(a)·x |σ(y) = ν(a·x) |σ(y) = δ

Axiom DRTCM11

ACP−drt–ID ` σ(x) | a·y = δ

This axiom is treated symmetrically to the previous axiom.
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Part II

Secondly, we show that Axioms DRTCM6–DRTCM7 of ACP−drt–ID are also derivable in
ACP−drt–ID′:

Axiom DRTCM6

ACP−drt–ID′ ` σ(x) | ν(y) = δ
Use the general form of basic term y. Take:

y ≡
∑
i<m
ai·ti +

∑
j<n
bj +

∑

k<p
σ(uk)

for m,n,p ∈ N, ai, bj ∈ Aδ, and basic terms ti and uk. Then we have:

ACP−drt–ID′ ` σ(x) | ν(y) =

σ(x) | ν

∑
i<m
ai·ti +

∑
j<n
bj +

∑

k<p
σ(uk)


 =

σ(x) |

∑

i<m
ν(ai·ti)+

∑

j<n
ν(bj)+

∑

k<p
ν(σ(uk))


 =

σ(x) |

∑
i<m
ν(ai)·ti +

∑
j<n
ν(bj)+

∑

k<p
ν(σ(uk))


 =

σ(x) |

∑
i<m
ai·ti +

∑
j<n
bj +

∑

k<p
δ


 =


σ(x) |

∑
i<m
ai·ti


+


σ(x) |

∑
j<n
bj


+


σ(x) |

∑

k<p
δ


 =


∑
i<m
σ(x) | ai·ti


+


∑
j<n
σ(x) | bj


+


∑

k<p
σ(x) | δ


 =

∑
i<m
δ+

∑
j<n
δ+

∑

k<p
δ =

δ

Axiom DRTCM7

ACP−drt–ID′ ` ν(x) |σ(y) = δ
This axiom is treated symmetrically to the previous axiom.

�

Theorem 5.2.4.11 (Deduction-System Ground Equiv. of ACP−drt–ID and ACP−drt–ID′)
ACP−drt–ID and ACP−drt–ID′ are deduction-system ground equivalent.

Proof Both T(ACP−drt–ID) and T(ACP−drt–ID′) have the same signature and the same set
of deduction rules, so trivially the same equalities hold between closed terms in the re-
spective bisimulation models. �
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Corollary 5.2.4.12 (Soundness of ACP−drt–ID′)
The set of all closed ACP−drt–ID′ terms modulo bisimulation equivalence is a model of
ACP−drt–ID′.

Proof We use the ground equivalence method described in Proof Outline 4.2.2.3 on
page 70. The proof then follows immediately from the following observations and The-
orem 5.2.2.15:

(i). The process algebras ACP−drt–ID and ACP−drt–ID′ are ground equivalent (see Theo-
rems 5.2.4.10 and 5.2.4.11),

(ii). Soundness of ACP−drt–ID (see Theorem 5.2.3.10).

�

Remark 5.2.4.13 (Soundness of ACP−drt–ID′)
Soundness of a slightly different version of ACP−drt–ID′ is also claimed (without proof) in
Theorem 3.6.5 of BAETEN AND VERHOEF [37], (where ACP−drt–ID′ is called ACPdt).

Corollary 5.2.4.14 (Completeness of ACP−drt–ID′)
The axiom system ACP−drt–ID′ is a complete axiomatization of the set of closed ACP−drt–ID′

terms modulo bisimulation equivalence.

Proof We use the ground equivalence method described in Proof Outline 4.2.3.3 on
page 71. The proof then follows immediately from the following observations and The-
orem 5.2.2.15:

(i). The process algebras ACP−drt–ID and ACP−drt–ID′ are ground equivalent (see Theo-
rems 5.2.4.10 and 5.2.4.11),

(ii). Completeness of ACP−drt–ID (see Theorem 5.2.3.13).

�

Remark 5.2.4.15 (Completeness of ACP−drt–ID′)
Completeness of a slightly different version of ACP−drt–ID′ is also claimed (without proof)
in Theorem 3.6.7 of BAETEN AND VERHOEF [37], (where ACP−drt–ID′ is called ACPdt).

5.3 Process Algebras with Delayable Actions

We introduce the process algebras PA+drt, PA′drt, ACP+drt, ACP′drt, and ACP′′drt. These are all
based on BPA+drt, and hence do contain delayable actions and the immediate deadlock.
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5.3.1 PA+drt

In this section, we extend BPAdrt to PAdrt by introducing axioms for the left merge that
take into account the presence of the immediate deadlock. The new axioms are in the
σ/ν-style of PA−drt–ID from Section 5.2.1.

Definition 5.3.1.1 (Signature of PAdrt)
The signature of PAdrt consists of the undelayable actions {a|a ∈ A}, the delayable ac-
tions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable deadlock constant δ,
the immediate deadlock constant δ̇, the alternative composition operator +, the sequential
composition operator ·, the time-unit delay operator σrel, the “now” operator νrel, the un-
bounded start delay operator b cω, the free merge operator ‖, and the left merge operator
‖ .

Definition 5.3.1.2 (Axioms of PAdrt)
The process algebra PAdrt is axiomatized by the axioms of BPAdrt that are given in Defi-
nition 3.2.4.5 on page 55, Axioms DRTM1 and DRTM4 shown in Table 5.1 on page 106,
Axiom DRTM6 shown in Table 5.2 on page 106, and finally Axioms DRTM2ID–DRTM3ID,
DRTM5ID, and DRTMID1–DRTMID2 shown in Table 5.14: PAdrt = A1–A5 + A6ID + A7ID
+ DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID + ATS + USD + DRTM1 + DRTM2ID–
DRTM3ID + DRTM4 + DRTM5ID + DRTM6 + DRTMID1–DRTMID2.

a ‖ (x+ δ) = a·(x+ δ) DRTM2ID

a·x ‖ (y+ δ) = a·(x ‖ (y + δ)) DRTM3ID

σrel(x) ‖ (νrel(y)+ δ) = δ DRTM5ID

x ‖ δ̇ = δ̇ DRTMID1

δ̇ ‖ x = δ̇ DRTMID2

Table 5.14: Additional axioms for PAdrt.

☞ Axioms DRTM2ID, DRTM3ID, and DRTM5ID are weakened versions of Axioms DRTM2
and DRTM3 of Table 5.1 on page 106, and Axiom DRTM5 of Table 5.2 on page 106. In all
three cases, the axiom is weakened by adding δ to the right argument of the left merge,
in order to avoid the axiom from applying to the case where the right argument is δ̇ (see
also the comment on page 27). Note that Axioms DRTM2ID and DRTM3ID can also be
viewed as reformulations of their untimed counterparts, Axioms M2ID and M3ID from
Table 2.16 on page 26.

Axioms DRTMID1 and DRTMID2 express that an immediate deadlock on either side
of a left merge collapses the entire left merge to immediate deadlock. They are identical
to Axioms MID1 and MID2 we already encountered in Table 2.16 on page 26.

Definition 5.3.1.3 (Semantics of PAdrt)
The semantics of PAdrt are given by the term-deduction system T(PAdrt) induced by the
deduction rules for BPAdrt given in Definition 3.2.4.9 on page 57 and the deduction rules
for the free merge with immediate deadlock shown in Table 5.15 on the facing page.
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x a→ x′, ¬ID(y)
x ‖ y a→ x′ ‖ y

y a→ y′, ¬ID(x)
x ‖ y a→ x ‖ y′

x a→ x′, ¬ID(y)
x ‖ y a→ x′ ‖ y

x a→√, ¬ID(y)
x ‖ y a→ y

y a→√, ¬ID(x)
x ‖ y a→ x

x a→√, ¬ID(y)
x ‖ y a→ y

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

ID(x)
ID(x ‖ y)

ID(y)
ID(x ‖ y)

ID(x)
ID(x ‖ y)

ID(y)
ID(x ‖ y)

Table 5.15: Deduction rules for free merge with immediate deadlock.

☞ The deduction rules for the free merge in the presence of the immediate deadlock are
similar to those for the free merge shown in Table 5.3 on page 107, with the exception
that we now require that one side of the free merge or left merge can only execute an
action if the ID predicate does not hold for the other side. Furthermore, there are four
deduction rules to define the immediate deadlock predicate on the free merge and the
left merge.

Definition 5.3.1.4 (Bisimulation and Bisimulation Model for PAdrt)
Bisimulation for PAdrt and the corresponding bisimulation model are defined in the same
way as for BPA−drt and BPA respectively. Replace “BPA−drt” by “PAdrt” in Definition 3.2.3.5
on page 53 and “BPA” by “PAdrt” in Definition 2.3.1.16 on page 12.

Definition 5.3.1.5 (Basic Terms of PAdrt)
If we speak of basic terms in the context of PAdrt, we mean (σ,δ, δ, δ̇)-basic terms as
defined in Definition 3.2.4.11 on page 57.

Definition 5.3.1.6 (Number of Symbols of a PAdrt term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(δ̇) = 1,

(ii). for a ∈ Aδ, we define n(a) = n(a) = 1,

(iii). for closed PAdrt terms x and y, we define n(x+y) = n(x·y) = n(x ‖ y) = n(x ‖ y) =
n(x)+ n(y)+ 1,

(iv). for a closed PAdrt term x, we define n(σ(x)) = n(ν(x)) = n(bxcω) = n(x)+ 1.
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Proposition 5.3.1.7 (Properties of PA+drt)
For PAdrt terms x and y, and any a ∈ Aδ, we have the following equalities:

(i). PA+drt ` bacω= a
(ii). PA+drt ` bx·ycω= bxcω·y
(iii). PA+drt ` bx+ ycω= bxcω+ bycω

(iv). PA+drt ` bσ(x)cω= δ
(v). PA+drt ` bδ̇cω= δ
(vi). PA+drt ` a ‖ bxcω= a·bxcω

(vii). PA+drt ` a·x ‖ bycω= a·(x ‖ bycω)
(viii). PAdrt ` ν(a) = a

(ix). PAdrt ` bxcω+ δ = bxcω

Proof The proofs for equality (i)–(v) and (viii)–(ix) given in Proposition 3.2.4.14 on
page 58, with respect to BPAdrt, remain valid in the setting of PAdrt, as can be easily
checked.

Equality (vi) and (vii) do not appear in Proposition 3.2.4.14. Consider the following
computation for equality (vi):

PAdrt ` a ‖ bxcω= bacω‖ bxcω
= (ν(a)+σ(bacω)) ‖ bxcω
= (a+σ(a)) ‖ bxcω
= a ‖ bxcω+σ(a) ‖ bxcω
= a ‖ (bxcω+ δ)+σ(a) ‖ (ν(x)+σ(bxcω))
= a·(bxcω+ δ)+σ(a ‖ bxcω)
= ν(a)·bxcω+σ(a ‖ bxcω)
= ν(a·bxcω)+σ(a ‖ bxcω)

Using RSP(USD) we obtain:

PA+drt ` a ‖ bxcω=
⌊
a·bxcω⌋ω= bacω·bxcω= a·bxcω

Finally, consider the following computation for equality (vii):

PAdrt ` a·x ‖ bycω= bacω·x ‖ bycω
= (ν(a)+σ(bacω))·x ‖ bycω
= (a+σ(a))·x ‖ bycω
= (a·x+σ(a·x)) ‖ bycω
= a·x ‖ bycω+σ(a·x) ‖ bycω
= a·x ‖ (bycω+ δ)+σ(a·x) ‖ (ν(y)+σ(bycω))
= a·(x ‖ (bycω+ δ))+σ(a·x ‖ bycω)
= ν(a)·(x ‖ bycω)+σ(a·x ‖ bycω)
= ν(a·(x ‖ bycω))+σ(a·x ‖ bycω)
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Using RSP(USD) we obtain:

PA+drt ` a·x ‖ bycω=
⌊
a·(x ‖ bycω)⌋ω= bacω·(x ‖ bycω) = a·(x ‖ bycω)

�

☞ The equalities of Proposition 5.3.1.7 on the facing page are needed in the elimina-
tion proof for PA+drt. By collecting them all into one proposition, we are able to prove
elimination without explicitly referring to RSP(USD). This has the advantage that we can
keep track of the places where RSP(USD) is needed, and why it is needed there. Using
this knowledge, we introduce, in Section 5.3.2, new (unconditional) axioms to replace
RSP(USD), and do so in a systematic way.

Theorem 5.3.1.8 (Elimination for PA+drt)
Let t be a closed PAdrt term. Then there is a closed BPAdrt term s such that PA+drt ` t = s.

Proof We use the direct method we described in Proof Outline 4.2.1.2 on page 68. Let t
be a closed PAdrt term. The theorem is proven by induction on n(t) and case distinction
on the general structure of t.

(i). t ≡ δ̇. Then t is a closed BPAdrt term.

(ii). t ≡ a for some a ∈ Aδ. Then t is a closed BPAdrt term.

(iii). t ≡ a for some a ∈ Aδ. Then t is a closed BPAdrt term.

(iv). t ≡ t1 + t2 for closed PAdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that PA+drt ` t1 = s1 and PA+drt ` t2 = s2. But then also PA+drt `
t1 + t2 = s1 + s2 and s1 + s2 is a closed BPAdrt term.

(v). t ≡ t1·t2 for closed PAdrt terms t1 and t2. This case is treated analogously to case
(iv).

(vi). t ≡ σ(t1) for a closed PAdrt term t1. This case is treated analogously to case (iv).

(vii). t ≡ ν(t1) for a closed PAdrt term t1. This case is treated analogously to case (iv).

(viii). t ≡ bt1cω for a closed PAdrt term t1. This case is treated analogously to case (iv).

(ix). t ≡ t1 ‖ t2 for closed PAdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that PA+drt ` t1 = s1 and PA+drt ` t2 = s2. By Theorem 4.3.4.1, the
elimination theorem for BPAdrt, there are basic terms r1 and r2 such that BPA+drt `
s1 = r1 and BPA+drt ` s2 = r2. But then also, PA+drt ` t1 = r1, PA+drt ` t2 = r2, and
PA+drt ` t1 ‖ t2 = r1 ‖ r2. We proceed by induction on the structure of basic terms,
and distinguish all possible cases for basic term r1:

(a) r1 ≡ δ̇. Then PA+drt ` t1 ‖ t2 = r1 ‖ r2 = δ̇ ‖ r2 = δ̇, and δ̇ is a closed BPAdrt

term.

(b) r1 ≡ a for some a ∈ Aδ. Using Lemma 3.2.4.19 we distinguish two cases:

1. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.
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2. r2 = r2 + δ. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = a ‖ (r2 + δ) =
a·(r2 + δ) = a·r2, and a·r2 is a closed BPAdrt term.

(c) r1 ≡ a for some a ∈ Aδ. Using Lemma 3.2.4.18 we distinguish four cases:

1. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

2. r2 = ν(r2)+ δ. Then we have:

PA+drt ` t1 ‖ t2 = r1 ‖ r2

= a ‖ r2

= bacω‖ r2

= (ν(a)+σ(bacω)) ‖ r2

= (a+σ(a)) ‖ r2

= a ‖ r2 +σ(a) ‖ r2

= a ‖ (ν(r2)+ δ)+σ(a) ‖ (ν(r2)+ δ)
= a·(ν(r2)+ δ)+ δ
= a·r2 + δ
= a·r2 + δ·r2

= (a+ δ)·r2

= a·r2,

and a·r2 is a closed BPAdrt term.

3. r2 = br2cω. Then, using Proposition 5.3.1.7(vi), we have: PA+drt ` t1 ‖ t2 =
r1 ‖ r2 = a ‖ br2cω= a·br2cω= a·r2, and a·r2 is a closed BPAdrt term.

4. r2 = ν(r2) + σ(r′2) for a basic term r′2 such that n(r′2) < n(r2). Then we
have:

PA+drt ` t1 ‖ t2 = r1 ‖ r2

= a ‖ r2

= bacω‖ r2

= (ν(a)+σ(bacω)) ‖ r2

= (a+σ(a)) ‖ r2

= a ‖ r2 +σ(a) ‖ r2

= a ‖ (ν(r2)+σ(r′2))+
σ(a) ‖ (ν(r2)+σ(r′2))

= a ‖ (ν(r2)+σ(r′2)+ δ)+σ(a ‖ r′2)
= a·(ν(r2)+σ(r′2)+ δ)+σ(a ‖ r′2)
= a·(ν(r2)+σ(r′2))+σ(a ‖ r′2)
= a·r2 +σ(a ‖ r′2).

By the induction hypothesis there exists a closed BPAdrt term p such that
PA+drt ` a ‖ r′2 = p. Then, PA+drt ` t1 ‖ t2 = a·r2+σ(a ‖ r′2) = a·r2+σ(p),
and a·r2 +σ(p) is a closed BPAdrt term.
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(d) r1 ≡ a·r′1 for some a ∈ Aδ and basic term r′1. Using Lemma 3.2.4.19 we distin-
guish two cases:

1. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

2. r2 = r2 + δ. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = a·r′1 ‖ (r2 + δ) =
a·(r′1 ‖ (r2+δ)) = a·(r′1 ‖ r2). By the induction hypothesis there exists a
closed BPAdrt term p such that PA+drt ` r′1 ‖ r2 = p. Then, PA+drt ` t1 ‖ t2 =
a·(r′1 ‖ r2) = a·p, and a·p is a closed BPAdrt term.

(e) r1 ≡ a·r′1 for some a ∈ Aδ and basic term r′1. Using Lemma 3.2.4.18 we distin-
guish four cases:

1. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

2. r2 = ν(r2)+ δ. Then we have:

PA+drt ` t1 ‖ t2 = r1 ‖ r2

= a·r′1 ‖ r2

= bacω·r′1 ‖ r2

= (ν(a)+σ(bacω))·r′1 ‖ r2

= (a+σ(a))·r′1 ‖ r2

= (a·r′1 +σ(a)·r′1) ‖ r2

= (a·r′1 +σ(a·r′1)) ‖ r2

= a·r′1 ‖ r2 +σ(a·r′1) ‖ r2

= a·r′1 ‖ (ν(r2)+ δ)+σ(a·r′1) ‖ (ν(r2)+ δ)
= a·(r′1 ‖ (ν(r2)+ δ))+ δ
= a·(r′1 ‖ r2)+ δ
= a·(r′1 ‖ r2)+ δ·(r′1 ‖ r2)
= (a+ δ)·(r′1 ‖ r2)
= a·(r′1 ‖ r2).

By the induction hypothesis there exists a closed BPAdrt term p such that
PA+drt ` r′1 ‖ r2 = p. Then, PA+drt ` t1 ‖ t2 = a·(r′1 ‖ r2) = a·p, and a·p is a
closed BPAdrt term.

3. r2 = br2cω. Then, using Proposition 5.3.1.7(vii), we have: PA+drt ` t1 ‖ t2 =
r1 ‖ r2 = a·r′1 ‖ br2cω = a·(r′1 ‖ br2cω) = a·(r′1 ‖ r2). By the induction
hypothesis there exists a closed BPAdrt termp such that PA+drt ` r′1 ‖ r2 = p.
Then, PA+drt ` t1 ‖ t2 = a·(r′1 ‖ r2) = a·p, and a·p is a closed BPAdrt term.

4. r2 = ν(r2) + σ(r′2) for a basic term r′2 such that n(r′2) < n(r2). Then we
have:

PA+drt ` t1 ‖ t2 = r1 ‖ r2

= a·r′1 ‖ r2

= bacω·r′1 ‖ r2

= (ν(a)+σ(bacω))·r′1 ‖ r2
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= (a+σ(a))·r′1 ‖ r2

= (a·r′1 +σ(a)·r′1) ‖ r2

= (a·r′1 +σ(a·r′1)) ‖ r2

= a·r′1 ‖ r2 +σ(a·r′1) ‖ r2

= a·r′1 ‖ (ν(r2)+σ(r′2))+
σ(a·r′1) ‖ (ν(r2)+σ(r′2))

= a·r′1 ‖ (ν(r2)+σ(r′2)+ δ)+
σ(a·r′1) ‖ (ν(r2)+σ(r′2))

= a·(r′1 ‖ (ν(r2)+σ(r′2)+ δ))+σ(a·r′1 ‖ r′2)
= a·(r′1 ‖ (ν(r2)+σ(r′2))+σ(r1 ‖ r′2)
= a·(r′1 ‖ r2)+σ(r1 ‖ r′2).

By the induction hypothesis there exist closed BPAdrt terms p1 and p2 such
that PA+drt ` r′1 ‖ r2 = p1 and PA+drt ` r1 ‖ r′2 = p2. Then, PA+drt ` t1 ‖ t2 =
a·(r′1 ‖ r2) + σ(r1 ‖ r′2) = a·p1 + σ(p2), and a·p1 + σ(p2) is a closed
BPAdrt term.

(f) r1 ≡ r′1 + r′′1 for basic terms r′1 and r′′1 . Then PA+drt ` t1 ‖ t2 = r1 ‖ r2 = (r′1 +
r′′1 ) ‖ r2 = r′1 ‖ r2 + r′′1 ‖ r2. By induction there exist closed BPAdrt terms p1

and p2 such that PA+drt ` r′1 ‖ r2 = p1 and PA+drt ` r′′1 ‖ r2 = p2. Then also
PA+drt ` t1 ‖ t2 = r′1 ‖ r2+r′′1 ‖ r2 = p1+p2, and p1+p2 is a closed BPAdrt term.

(g) r1 ≡ σ(r′1) for a basic term r′1. Using Lemma 3.2.4.18 we distinguish four cases:

1. r2 = δ̇. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

2. r2 = ν(r2)+ δ. Then PA+drt ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ (ν(r2) + δ) = δ,
and δ is a closed BPAdrt term.

3. r2 = br2cω. Then we have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ br2cω =
σ(r′1) ‖ (ν(r2)+σ(br2cω) = σ(r′1 ‖ br2cω) = σ(r′1 ‖ r2). By the induction
hypothesis there exists a closed BPAdrt termp such that PA+drt ` r′1 ‖ r2 = p.
Then, PA+drt ` t1 ‖ t2 = σ(r′1 ‖ r2) = σ(p), and σ(p) is a closed BPAdrt

term.

4. r2 = ν(r2) + σ(r′2) for a basic term r′2 such that n(r′2) < n(r2). Then we
have: PA+drt ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ (ν(r2)+σ(r′2)) = σ(r′1 ‖ r′2). By
the induction hypothesis there is a closed BPAdrt term p such that PA+drt `
r′1 ‖ r′2 = p. Then, PA+drt ` t1 ‖ t2 = σ(r′1 ‖ r′2) = σ(p), and σ(p) is a
closed BPAdrt term.

(x). t ≡ t1 ‖ t2 for closed PAdrt terms t1 and t2. Then PA+drt ` t1 ‖ t2 = t1 ‖ t2 + t2 ‖ t1.
By (ix) there are closed BPAdrt terms p1 and p2 such that PA+drt ` t1 ‖ t2 = p1 and
PA+drt ` t2 ‖ t1 = p2. But then also PA+drt ` t1 ‖ t2 = t1 ‖ t2 + t2 ‖ t1 = p1 + p2, and
p1 + p2 is a closed BPAdrt term.

�
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Corollary 5.3.1.9 (Elimination for PA+drt)
Let t be a closed PAdrt term. Then there is a basic term s such that PA+drt ` s = t.
Proof This follows immediately from:

(i). The elimination theorem for PA+drt (see Theorem 5.3.1.8),

(ii). the elimination theorem for BPA+drt (see Theorem 4.3.4.1),

(iii). the fact that all axioms of BPA+drt are also contained in PA+drt.

�

Remark 5.3.1.10 (Elimination for PAdrt)
Elimination for a somewhat different version of PAdrt is also claimed (without proof) in
Section 3.9 of BAETEN AND BERGSTRA [24].

Theorem 5.3.1.11 (Soundness of PA+drt)
The set of closed PAdrt terms modulo bisimulation equivalence is a model of PA+drt.

Proof We use the direct method described in Proof Outline 4.2.2.1 on page 69. We only
prove soundness for the axioms of PAdrt that have not been treated in earlier soundness
proofs. Note that to extend these proofs to PAdrt, we have to check that the bisimula-
tions given in previous soundness proofs respect the ID predicate (as required by trans-
fer condition (iv.) in Definition 3.2.3.5 on page 53). However, as the fact that they do can
be easily checked, we will not give details.

Axiom DRTM2ID Take the relation:

R = {(s, s), (a ‖ (s+ δ),a·(s+ δ))|s ∈ C(PAdrt)}
We look at the transitions of both sides at the same time. The only transition of the
left-hand side is a ‖ (s+ δ) a→ s+ δ, and the only transition of the right-hand side
is a·(s+ δ) a→ s+ δ, and note that (s+ δ, s+ δ) ∈ R. Finally, neither side satisfies
the ID predicate: ¬ID(a ‖ (s+ δ)) and ¬ID(a·(s+ δ)) (note that ¬ID(s+ δ) even
if ID(s)).

Axiom DRTM3ID Take the relation:

R = {(s, s), (a·s ‖ (t + δ),a·(s ‖ (t+ δ)))|s, t ∈ C(PAdrt)}
We look at the transitions of both sides at the same time. The only transition of the
left-hand side is a·s ‖ (t+δ) a→ s ‖ (t+δ), and the only transition of the right-hand
side is a·(s ‖ (t+δ)) a→ s ‖ (t+δ), and note that (s ‖ (t+δ), s ‖ (t+δ)) ∈ R. Finally,
neither side satisfies the ID predicate: ¬ID(a·s ‖ (t+δ)) and ¬ID(a·(s ‖ (t+δ)).

Axiom DRTM5ID Take the relation:

R = {(σ(s) ‖ (ν(t)+ δ),δ)|s, t ∈ C(PAdrt)}
We look at the transitions of both sides at the same time. Observe that there are no
transitions possible on the left-hand side: σ(s) ‖ (ν(t)+δ)3 . Also for the right-
hand side there are no transitions possible: δ3 . Finally, neither side satisfies the
ID predicate: ¬ID(σ(s) ‖ (ν(t)+δ)) and ¬ID(δ) (note that ¬ID(ν(t)+δ) even if
ID(t)).
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Axiom DRTMID1 Take the relation:

R = {(s ‖ δ̇, δ̇)|s ∈ C(PAdrt)}

We look at the transitions of both sides at the same time. Observe that there are
no transitions possible on the left-hand side: s ‖ δ̇3 . Also for the right-hand side
there are no transitions possible: δ̇3 . Finally, both sides satisfy the ID predicate:
ID(s ‖ δ̇) and ID(δ̇) (note that ID(s ‖ δ̇) even if ¬ID(s)).

Axiom DRTMID2 Take the relation:

R = {(δ̇, s ‖ δ̇)|s ∈ C(PAdrt)}

This case is treated symmetrically to the previous case.

�

Remark 5.3.1.12 (Soundness of PAdrt)
Soundness of a somewhat different version of PAdrt is also claimed (without proof) in
Section 3.9 of BAETEN AND BERGSTRA [24].

Theorem 5.3.1.13 (Conservativity of PA+drt with respect to BPA+drt)
The process algebra PA+drt is a conservative extension of the process algebra BPA+drt.

Proof In order to prove conservativity it is sufficient to verify that the following con-
ditions are satisfied:

(i). Bisimulation equivalence is definable in terms of predicate and relation symbols
only,

(ii). BPA+drt is a complete axiomatization with respect to the bisimulation equivalence
model induced by T(BPAdrt) (see Theorem 4.3.4.9),

(iii). PA+drt is a sound axiomatization with respect to the bisimulation equivalence model
induced by T(PAdrt) (see Theorem 5.3.1.11),

(iv). T(PAdrt) is an operationally conservative extension of T(BPAdrt).

And in order for T(PAdrt) to be an operationally conservative extension of T(BPAdrt) we
must verify the following conditions:

(i). T(BPAdrt) is a pure, well-founded term-deduction system in path format,

(ii). T(PAdrt) is a term-deduction system in path format,

(iii). T(BPAdrt)⊕T(PAdrt) is defined.

That the above properties hold can be trivially checked from the relevant definitions. �
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Theorem 5.3.1.14 (Completeness of PA+drt)
The axiom system PA+drt is a complete axiomatization of the set of closed PAdrt terms modulo
bisimulation equivalence.

Proof We use Verhoef’s method described in Proof Outline 4.2.3.4 on page 71. Com-
pleteness then follows immediately from:

(i). PA+drt has the elimination property for BPAdrt (see Theorem 5.3.1.8),

(ii). PA+drt is a conservative extension of BPA+drt (see Theorem 5.3.1.13).

�

Remark 5.3.1.15 (Completeness of PAdrt)
Completeness of a somewhat different version of PAdrt is also claimed (without proof) in
Section 3.9 of BAETEN AND BERGSTRA [24].

5.3.2 PA′drt

In this section, we define a process algebra named PA′drt, that is almost identical to PAdrt,
except that it has seven additional axioms. These are chosen such that elimination,
soundness, and completeness results for PA′drt follow as corollaries from the correspond-
ing results for PA+drt.

Definition 5.3.2.1 (Axioms of PA′drt)
The process algebra PA′drt is axiomatized by the axioms of PAdrt that are given in Def-
inition 5.3.1.2 on page 142, Axioms USD1–USD5 shown in Table 4.5 on page 102, and
Axioms USD6–USD7 shown in Table 5.16: PA′drt = A1–A5 + A6ID + A7ID + DRT1–DRT5 +
DRTSID + DCS1–DCS4 + DCSID + ATS + USD + DRTM1 + DRTM2ID–DRTM3ID + DRTM4 +
DRTM5ID + DRTM6 + DRTMID1–DRTMID2 + USD1–USD7.

a ‖ bxcω= a·bxcω USD6

a·x ‖ bycω= a·(x ‖ bycω) USD7

Table 5.16: Additional axioms for unbounded start delay and left merge.

☞ Axioms USD1–USD7 precisely correspond to equalities (i)–(vii) of Proposition 5.3.1.7
on page 144. In this way, we obtain an axiomatization that is in many ways (elimination,
soundness, completeness) like PA+drt, but is also purely equational, i.e., does not contain
conditional axioms or recursion principles.

Definition 5.3.2.2 (Signature, Semantics, and Basic Terms of PA′drt)
The signature, semantics, bisimulation, bisimulation model, and basic terms of PA′drt are
the same as those of PAdrt.
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Corollary 5.3.2.3 (Elimination for PA′drt)
Let t be a closed PA′drt term. Then there is a basic term s such that PA′drt ` t = s.

Proof In the same way as Theorem 5.3.1.8 and Corollary 5.3.1.9. Note that all equal-
ities of Proposition 5.3.1.7 that are used in the proof of Theorem 5.3.1.8 correspond to
derivable equalities in PA′drt. �

Corollary 5.3.2.4 (Soundness of PA′drt)
The set of closed PA′drt terms modulo bisimulation equivalence is a model of PA′drt.

Proof We use the indirect method of Proof Outline 4.2.2.2 on page 70. The result fol-
lows directly from the soundness of PA+drt (see Theorem 5.3.1.11 on page 149) combined
with the fact that Axioms USD1–USD7 are derivable in PA+drt (see Proposition 5.3.1.7 on
page 144). �

Corollary 5.3.2.5 (Completeness of PA′drt)
The axiom system PA′drt is a complete axiomatization of the set of closed PA′drt terms modulo
bisimulation equivalence.

Proof We use the indirect method of Proof Outline 4.2.3.2 on page 71. Careful inspec-
tion of the dependencies between the proofs in this section reveals that the proof of The-
orem 5.3.1.14 only relies upon RSP(USD) to ensure Proposition 5.3.1.7(i)–(vii). So, we ob-
viously do not need RSP(USD) anymore if we add the corresponding Axioms USD1–USD7,
and the result follows. �

5.3.3 ACP+drt

In this section, we modify PAdrt by extending the free merge to a merge, where the axioms
for the communication merge are in theσ/ν-style of ACP−drt–ID, but take into account the
presence of the immediate deadlock. The resulting process algebra is called ACPdrt.

Definition 5.3.3.1 (Signature of ACPdrt)
The signature of ACPdrt consists of the undelayable actions {a|a ∈ A}, the delayable ac-
tions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable deadlock constant δ,
the immediate deadlock constant δ̇, the alternative composition operator +, the sequen-
tial composition operator ·, the time-unit delay operator σrel, the “now” operator νrel, the
unbounded start delay operator b cω, the merge operator ‖, the left merge operator ‖ ,
the communication merge operator | , and the encapsulation operator ∂H.

Definition 5.3.3.2 (Axioms of ACPdrt)
The process algebra ACPdrt is axiomatized by the axioms of PAdrt that are given in
Definition 5.3.1.2 on page 142 minus Axiom DRTM1, plus Axioms DRTCM1–DRTCM5,
DRTCM12–DRTCM13, DRTCF, and DRTD1–DRTD5 shown in Table 5.6 on page 122,
and the Axioms DRTMID3–DRTMID4, DRTCM6ID–DRTCM7ID, and DRTD6 shown in Ta-
ble 5.17 on the next page: ACPdrt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID +
DCS1–DCS4 + DCSID + ATS + USD + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTCM1–DRTCM5 + DRTCM6ID–DRTCM7ID + DRTCM12–DRTCM13 + DRTCF + DRTD1–
DRTD6 + DRTMID1–DRTMID4.
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σrel(x) | (νrel(y)+ δ) = δ DRTCM6ID

(νrel(x)+ δ) |σrel(y) = δ DRTCM7ID

x | δ̇ = δ̇ DRTMID3

δ̇ | x = δ̇ DRTMID4

∂H(δ̇) = δ̇ DRTD6

Table 5.17: Additional axioms for ACPdrt.

☞ Axioms DRTCM6ID and DRTCM7ID are weakened versions of Axioms DRTCM6 and
DRTCM7 of Table 5.6 on page 122. In both cases, the axiom is weakened by adding δ to
the argument of the communication merge that cannot do a time step, in order to avoid
the axiom from applying to the case where that argument is δ̇ (see also the comment on
page 27).

Axioms DRTMID3 and DRTMID4 express that an immediate deadlock on either side of
a communication merge collapses the entire communication merge to immediate dead-
lock, and Axiom DRTD6 expresses that the immediate deadlock cannot be encapsulated.
They are identical to Axioms MID3, MID4, and D6 we already encountered in Table 2.24
on page 34.

Definition 5.3.3.3 (Semantics of ACPdrt)
The semantics of ACPdrt are given by the term-deduction system T(ACPdrt) induced by
the deduction rules for PAdrt given in Definition 5.3.1.3 on page 142, the deduction rules
for the communication merge shown in Table 5.8 on page 123, and the additional deduc-
tion rules for ACPdrt shown in Table 5.18.

ID(x)
ID(x | y)

ID(y)
ID(x | y)

ID(x)
ID(∂H(x))

Table 5.18: Additional deduction rules for ACPdrt.

☞ We only introduce three new deduction rules in order to define the immediate-dead-
lock predicate on the communication merge and the encapsulation.

Definition 5.3.3.4 (Bisimulation and Bisimulation Model for ACPdrt)
Bisimulation for ACPdrt and the corresponding bisimulation model are defined in the
same way as for BPA−drt and BPA respectively. Replace “BPA−drt” by “ACPdrt” in Defini-
tion 3.2.3.5 on page 53 and “BPA” by “ACPdrt” in Definition 2.3.1.16 on page 12.

Definition 5.3.3.5 (Basic Terms of ACPdrt)
If we speak of basic terms in the context of ACPdrt, we mean (σ,δ, δ, δ̇)-basic terms as
defined in Definition 3.2.4.11 on page 57.
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Definition 5.3.3.6 (Number of Symbols of an ACPdrt term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(δ̇) = 1,

(ii). for a ∈ Aδ, we define n(a) = n(a) = 1,

(iii). for closed ACPdrt terms x and y, we definen(x+y) = n(x·y) = n(x ‖ y) = n(x ‖ y) =
n(x | y) = n(x)+ n(y)+ 1,

(iv). for a closed ACPdrt term x, we define n(σ(x)) = n(ν(x)) = n(bxcω) = n(∂H(x)) =
n(x)+ 1.

Proposition 5.3.3.7 (Properties of ACP+drt, Part I)
For ACPdrt terms x and y, and any a ∈ Aδ, we have the following equalities:

(i). ACP+drt ` bacω= a
(ii). ACP+drt ` bx·ycω= bxcω·y
(iii). ACP+drt ` bx+ ycω= bxcω+ bycω

(iv). ACP+drt ` bσ(x)cω= δ
(v). ACP+drt ` bδ̇cω= δ
(vi). ACP+drt ` a ‖ bxcω= a·bxcω

(vii). ACP+drt ` a·x ‖ bycω= a·(x ‖ bycω)
(viii). ACPdrt ` ν(a) = a

(ix). ACPdrt ` bxcω+ δ = bxcω

Proof The proofs for these equalities given in Proposition 5.3.1.7 on page 144, with
respect to PAdrt, remain valid in the setting of ACPdrt, as can be easily checked. �

Proposition 5.3.3.8 (Properties of ACP+drt, Part II)
For ACPdrt terms x and y and any a,b, c ∈ Aδ, we have the following equalities:

(i). ACP+drt ` a | b = c if γ(a,b) = c
(ii). ACP+drt ` a | b·x = (a | b)·x
(iii). ACP+drt ` a·x | b = (a | b)·x
(iv). ACP+drt ` a·x | b·y = (a | b)·(x ‖ y)
(v). ACP+drt ` ∂H(a) = a if a ∉ H

(vi). ACP+drt ` ∂H(a) = δ if a ∈ H

Proof
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(i). Consider the following computation:

ACPdrt ` a | b = bacω| bbcω
= (ν(a)+σ(bacω)) | (ν(b)+σ(bbcω))
= (a+σ(a)) | (b+σ(b))
= a | b+ a |σ(b)+σ(a) | b+σ(a) |σ(b)
= a | b+ ν(a) |σ(b)+σ(a) | ν(b)+σ(a) |σ(b)
= c+ δ+ δ+σ(a | b)
= c+σ(a | b)
= ν(c)+σ(a | b)

Using RSP(USD), we obtain:

ACP+drt ` a | b = bccω= c

(ii). Consider the following computation:

ACPdrt ` a | b·x = bacω| bbcω·x
= (ν(a)+σ(bacω)) | (ν(b)+σ(bbcω))·x
= (a+σ(a)) | (b+σ(b))·x
= (a+σ(a)) | (b·x+σ(b)·x)
= a | b·x+ a |σ(b)·x+
σ(a) | b·x+σ(a) |σ(b)·x

= a | b·x+ ν(a) |σ(b)·x+
σ(a) | ν(b)·x+σ(a) |σ(b)·x

= a | b·x+ ν(a) |σ(b·x)+
σ(a) | ν(b·x)+σ(a) |σ(b·x)

= γ(a,b)·x+ δ+ δ+σ(a | b·x)
= γ(a,b)·x+σ(a | b·x)
= ν(γ(a,b))·x+σ(a | b·x)
= ν(γ(a,b)·x)+σ(a | b·x)

Using RSP(USD), we obtain:

ACP+drt ` a | b·x = bγ(a,b)·xcω= bγ(a,b)cω·x = γ(a,b)·x
= (a | b)·x

(iii). This case is treated symmetrically to the previous case.
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(iv). Consider the following computation:

ACPdrt ` a·x | b·y = bacω·x | bbcω·y
= (ν(a)+σ(bacω))·x | (ν(b)+σ(bbcω))·y
= (a+σ(a))·x | (b+σ(b))·y
= (a·x+σ(a)·x) | (b·y+σ(b)·y)
= a·x | b·y+ a·x |σ(b)·y+
σ(a)·x | b·y+σ(a)·x |σ(b)·y

= a·x | b·y+ ν(a)·x |σ(b)·y+
σ(a)·x | ν(b)·y+σ(a)·x |σ(b)·y

= a·x | b·y+ ν(a·x) |σ(b·y)+
σ(a·x) | ν(b·y)+σ(a·x) |σ(b·y)

= γ(a,b)·(x ‖ y)+ δ+ δ+σ(a·x | b·y)
= γ(a,b)·(x ‖ y)+σ(a·x | b·y)
= ν(γ(a,b))·(x ‖ y)+σ(a·x | b·y)
= ν(γ(a,b)·(x ‖ y))+σ(a·x | b·y)

Using RSP(USD), we obtain:

ACP+drt ` a·x | b·y = bγ(a,b)·(x ‖ y)cω
= bγ(a,b)cω·(x ‖ y)
= γ(a,b)·(x ‖ y)
= (a | b)·(x ‖ y)

(v). Consider the following computation:

ACPdrt ` ∂H(a) = ∂H(bacω)
= ∂H(ν(a)+σ(bacω)
= ∂H(a+σ(a))
= ∂H(a)+ ∂H(σ(a))
= a+σ(∂H(a))
= ν(a)+σ(∂H(a))

Using RSP(USD), we obtain:

ACP+drt ` ∂H(a) = bacω= a

(vi). This case is treated analogously to the previous case.

�
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Remark 5.3.3.9 (Properties of ACP+drt, Part II)
Note that the equalities of Proposition 5.3.3.8 on page 154 are delayable reformulations
of Axioms DRTCF, DRTCM2–DRTCM4 for the communication merge, and Axioms DRTD1
and DRTD2 for the encapsulation. Such reformulations are however not possible for the
axioms for the left merge. Take for example DRTM2ID; although we do have:

ACP+drt ` a ‖ (x+ δ) = a·(x+ δ)

the delayable reformulation does not hold:

ACP+drt 6` a ‖ (x+ δ) = a·(x+ δ)

as can be seen by instantiating x with any x such that x σ3 . In that case, namely, a·(x+δ)
can delay, while a ‖ (x+ δ) cannot, because x cannot.

Proposition 5.3.3.10 (Properties of ACPdrt, Part III)
For ACPdrt terms x and y, and any a, b ∈ Aδ, we have the following equalities:

(i). ACPdrt ` a | b = a | b

(ii). ACPdrt ` a | b = a | b

(iii). ACPdrt ` a | b·x = (a | b)·x

(iv). ACPdrt ` a·x | b = (a | b)·x

(v). ACPdrt ` a | b·x = (a | b)·x

(vi). ACPdrt ` a·x | b = (a | b)·x

(vii). ACPdrt ` a·x | b·y = (a | b)·(x ‖ y)

(viii). ACPdrt ` a·x | b·y = (a | b)·(x ‖ y)

Proof

(i). Consider the following computation:

ACPdrt ` a | b = a | bbcω
= a | (ν(b)+σ(bbcω)
= a | (b+σ(b))
= a | b+ a |σ(b)
= a | b+ ν(a) |σ(b)
= a | b+ δ
= a | b

(ii). This case is treated symmetrically to the previous case.
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(iii). Consider the following computation:

ACPdrt ` a | b·x = a | bbcω·x
= a | (ν(b)+σ(bbcω)·x
= a | (b+σ(b))·x
= a | (b·x+σ(b)·x)
= a | b·x+ a |σ(b)·x
= a | b·x+ ν(a) |σ(b·x)
= a | b·x+ δ
= a | b·x
= (a | b)·x

(iv). This case is treated symmetrically to the previous case.

(v). Consider the following computation:

ACPdrt ` a | b·x = bacω| b·x
= (ν(a)+σ(bacω) | b·x
= (a+σ(a)) | b·x
= a | b·x+σ(a) | b·x
= a | b·x+σ(a) | ν(b)·x
= a | b·x+σ(a) | ν(b·x)
= a | b·x+ δ
= a | b·x
= (a | b)·x

(vi). This case is treated symmetrically to the previous case.

(vii). Consider the following computation:

ACPdrt ` a·x | b·y = a·x | bbcω·y
= a·x | (ν(b)+σ(bbcω))·y
= a·x | (b+σ(b))·y
= a·x | (b·y+σ(b)·y)
= a·x | b·y + a·x |σ(b)·y
= a·x | b·y + ν(a)·x |σ(b)·y
= a·x | b·y + ν(a·x) |σ(b·y)
= a·x | b·y + δ
= a·x | b·y
= (a | b)·(x ‖ y)

(viii). This case is treated symmetrically to the previous case.

�
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Theorem 5.3.3.11 (Elimination for ACP+drt)
Let t be a closed ACPdrt term. Then there is a closed BPAdrt term s such that ACP+drt ` t = s.

Proof We use the direct method we described in Proof Outline 4.2.1.2 on page 68. Let t
be a closed ACPdrt term. The theorem is proven by induction on n(t) and case distinction
on the general structure of t.

(i). t ≡ δ̇. Then t is a closed BPAdrt term.

(ii). t ≡ a for some a ∈ Aδ. Then t is a closed BPAdrt term.

(iii). t ≡ a for some a ∈ Aδ. Then t is a closed BPAdrt term.

(iv). t ≡ t1 + t2 for closed ACPdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that ACP+drt ` t1 = s1 and ACP+drt ` t2 = s2. But then also
ACP+drt ` t1 + t2 = s1 + s2 and s1 + s2 is a closed BPAdrt term.

(v). t ≡ t1·t2 for closed ACPdrt terms t1 and t2. This case is treated analogously to case
(iv).

(vi). t ≡ σ(t1) for a closed ACPdrt term t1. This case is treated analogously to case (iv).

(vii). t ≡ ν(t1) for a closed ACPdrt term t1. This case is treated analogously to case (iv).

(viii). t ≡ bt1cω for a closed ACPdrt term t1. This case is treated analogously to case (iv).

(ix). t ≡ t1 ‖ t2 for closed ACPdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that ACP+drt ` t1 = s1 and ACP+drt ` t2 = s2. By Theorem
4.3.4.1, the elimination theorem for BPAdrt, there are basic terms r1 and r2 such
that BPA+drt ` s1 = r1 and BPA+drt ` s2 = r2. But then also, ACP+drt ` t1 = r1, ACP+drt `
t2 = r2, and ACP+drt ` t1 ‖ t2 = r1 ‖ r2. We proceed by induction on the structure of
basic terms, and distinguish all possible cases for basic term r1:

(a) r1 ≡ δ̇. Then ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = δ̇ ‖ r2 = δ̇, and δ̇ is a closed BPAdrt

term.

(b) r1 ≡ a for some a ∈ Aδ. Using Lemma 3.2.4.19 we distinguish two cases:

1. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

2. r2 = r2 + δ. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = a ‖ (r2 + δ) =
a·(r2 + δ) = a·r2, and a·r2 is a closed BPAdrt term.

(c) r1 ≡ a for some a ∈ Aδ. Using Lemma 3.2.4.18 we distinguish four cases:

1. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

2. r2 = ν(r2)+ δ. Then we have:

ACP+drt ` t1 ‖ t2 = r1 ‖ r2

= a ‖ r2

= bacω‖ r2

= (ν(a)+σ(bacω)) ‖ r2
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= (a+σ(a)) ‖ r2

= a ‖ r2 +σ(a) ‖ r2

= a ‖ (ν(r2)+ δ)+σ(a) ‖ (ν(r2)+ δ)
= a·(ν(r2)+ δ)+ δ
= a·r2 + δ
= a·r2 + δ·r2

= (a+ δ)·r2

= a·r2,

and a·r2 is a closed BPAdrt term.

3. r2 = br2cω. Then, using Proposition 5.3.3.7(vi), we have: ACP+drt ` t1 ‖ t2 =
r1 ‖ r2 = a ‖ br2cω= a·br2cω= a·r2, and a·r2 is a closed BPAdrt term.

4. r2 = ν(r2) + σ(r′2) for a basic term r′2 such that n(r′2) < n(r2). Then we
have:

ACP+drt ` t1 ‖ t2 = r1 ‖ r2

= a ‖ r2

= bacω‖ r2

= (ν(a)+σ(bacω)) ‖ r2

= (a+σ(a)) ‖ r2

= a ‖ r2 +σ(a) ‖ r2

= a ‖ (ν(r2)+σ(r′2))+
σ(a) ‖ (ν(r2)+σ(r′2))

= a ‖ (ν(r2)+σ(r′2)+ δ)+σ(a ‖ r′2)
= a·(ν(r2)+σ(r′2)+ δ)+σ(a ‖ r′2)
= a·(ν(r2)+σ(r′2))+σ(a ‖ r′2)
= a·r2 +σ(a ‖ r′2).

By the induction hypothesis there exists a closed BPAdrt term p such that
ACP+drt ` a ‖ r′2 = p. Then, ACP+drt ` t1 ‖ t2 = a·r2 + σ(a ‖ r′2) = a·r2 +
σ(p), and a·r2 +σ(p) is a closed BPAdrt term.

(d) r1 ≡ a·r′1 for some a ∈ Aδ and basic term r′1. Using Lemma 3.2.4.19 we distin-
guish two cases:

1. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

2. r2 = r2 + δ. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = a·r′1 ‖ (r2 + δ) =
a·(r′1 ‖ (r2 + δ)) = a·(r′1 ‖ r2). By the induction hypothesis there exists
a closed BPAdrt term p such that ACP+drt ` r′1 ‖ r2 = p. Then, ACP+drt `
t1 ‖ t2 = a·(r′1 ‖ r2) = a·p, and a·p is a closed BPAdrt term.

(e) r1 ≡ a·r′1 for some a ∈ Aδ and basic term r′1. Using Lemma 3.2.4.18 we distin-
guish four cases:

1. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = r1 ‖ δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.
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2. r2 = ν(r2)+ δ. Then we have:

ACP+drt ` t1 ‖ t2 = r1 ‖ r2

= a·r′1 ‖ r2

= bacω·r′1 ‖ r2

= (ν(a)+σ(bacω))·r′1 ‖ r2

= (a+σ(a))·r′1 ‖ r2

= (a·r′1 +σ(a)·r′1) ‖ r2

= (a·r′1 +σ(a·r′1)) ‖ r2

= a·r′1 ‖ r2 +σ(a·r′1) ‖ r2

= a·r′1 ‖ (ν(r2)+ δ)+σ(a·r′1) ‖ (ν(r2)+ δ)
= a·(r′1 ‖ (ν(r2)+ δ))+ δ
= a·(r′1 ‖ r2)+ δ
= a·(r′1 ‖ r2)+ δ·(r′1 ‖ r2)
= (a+ δ)·(r′1 ‖ r2)
= a·(r′1 ‖ r2).

By the induction hypothesis there exists a closed BPAdrt term p such that
ACP+drt ` r′1 ‖ r2 = p. Then, ACP+drt ` t1 ‖ t2 = a·(r′1 ‖ r2) = a·p, and a·p
is a closed BPAdrt term.

3. r2 = br2cω. Then, using Proposition 5.3.3.7(vii), we have: ACP+drt ` t1 ‖ t2 =
r1 ‖ r2 = a·r′1 ‖ br2cω = a·(r′1 ‖ br2cω) = a·(r′1 ‖ r2). By the induction
hypothesis there exists a closed BPAdrt term p such that ACP+drt ` r′1 ‖ r2 =
p. Then, ACP+drt ` t1 ‖ t2 = a·(r′1 ‖ r2) = a·p, and a·p is a closed BPAdrt

term.

4. r2 = ν(r2) + σ(r′2) for a basic term r′2 such that n(r′2) < n(r2). Then we
have:

ACP+drt ` t1 ‖ t2 = r1 ‖ r2

= a·r′1 ‖ r2

= bacω·r′1 ‖ r2

= (ν(a)+σ(bacω))·r′1 ‖ r2

= (a+σ(a))·r′1 ‖ r2

= (a·r′1 +σ(a)·r′1) ‖ r2

= (a·r′1 +σ(a·r′1)) ‖ r2

= a·r′1 ‖ r2 +σ(a·r′1) ‖ r2

= a·r′1 ‖ (ν(r2)+σ(r′2))+
σ(a·r′1) ‖ (ν(r2)+σ(r′2))

= a·r′1 ‖ (ν(r2)+σ(r′2)+ δ)+
σ(a·r′1) ‖ (ν(r2)+σ(r′2))

= a·(r′1 ‖ (ν(r2)+σ(r′2)+ δ))+σ(a·r′1 ‖ r′2)
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= a·(r′1 ‖ (ν(r2)+σ(r′2))+σ(r1 ‖ r′2)
= a·(r′1 ‖ r2)+σ(r1 ‖ r′2).

By the induction hypothesis there exist closed BPAdrt terms p1 and p2 such
that ACP+drt ` r′1 ‖ r2 = p1 and ACP+drt ` r1 ‖ r′2 = p2. Then, ACP+drt `
t1 ‖ t2 = a·(r′1 ‖ r2)+σ(r1 ‖ r′2) = a·p1 + σ(p2), and a·p1 +σ(p2) is a
closed BPAdrt term.

(f) r1 ≡ r′1 + r′′1 for basic terms r′1 and r′′1 . Then ACP+drt ` t1 ‖ t2 = r1 ‖ r2 =
(r′1+ r′′1 ) ‖ r2 = r′1 ‖ r2+ r′′1 ‖ r2. By induction there exist closed BPAdrt terms
p1 and p2 such that ACP+drt ` r′1 ‖ r2 = p1 and ACP+drt ` r′′1 ‖ r2 = p2. Then also
ACP+drt ` t1 ‖ t2 = r′1 ‖ r2 + r′′1 ‖ r2 = p1 + p2, and p1 + p2 is a closed BPAdrt

term.

(g) r1 ≡ σ(r′1) for a basic term r′1. Using Lemma 3.2.4.18 we distinguish four cases:

1. r2 = δ̇. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ δ̇ = δ̇, and δ̇ is
a closed BPAdrt term.

2. r2 = ν(r2)+δ. Then ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ (ν(r2)+δ) = δ,
and δ is a closed BPAdrt term.

3. r2 = br2cω. Then we have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ br2cω =
σ(r′1) ‖ (ν(r2)+σ(br2cω) = σ(r′1 ‖ br2cω) = σ(r′1 ‖ r2). By the induction
hypothesis there exists a closed BPAdrt term p such that ACP+drt ` r′1 ‖ r2 =
p. Then, ACP+drt ` t1 ‖ t2 = σ(r′1 ‖ r2) = σ(p), and σ(p) is a closed BPAdrt

term.

4. r2 = ν(r2) + σ(r′2) for a basic term r′2 such that n(r′2) < n(r2). Then we
have: ACP+drt ` t1 ‖ t2 = r1 ‖ r2 = σ(r′1) ‖ (ν(r2) + σ(r′2)) = σ(r′1 ‖ r′2).
By the induction hypothesis there is a closed BPAdrt term p such that
ACP+drt ` r′1 ‖ r′2 = p. Then, ACP+drt ` t1 ‖ t2 = σ(r′1 ‖ r′2) = σ(p), and
σ(p) is a closed BPAdrt term.

(x). t ≡ t1 | t2 for closed ACPdrt terms t1 and t2. By induction there are closed BPAdrt

terms s1 and s2 such that ACP+drt ` t1 = s1 and ACP+drt ` t2 = s2. By Theorem
4.3.4.1, the elimination theorem for BPA+drt, there are basic terms r1 and r2 such
that BPA+drt ` s1 = r1 and BPA+drt ` s2 = r2. But then also, ACP+drt ` t1 = r1, ACP+drt `
t2 = r2, and ACP+drt ` t1 | t2 = r1 | r2. We prove this case by simultaneous induction
on the structure of basic terms r1 and r2. We examine all possible cases (of which
there are in total 49, some of which can be treated simultaneously, reducing our
task to “just” 22 cases):

(a) r1 ≡ δ̇ and r2 is of arbitrary form. Then ACP+drt ` t1 | t2 = r1 | r2 = δ̇ | r2 = δ̇,
and δ̇ is a closed BPAdrt term.

(b) r1 is of arbitrary form and r2 ≡ δ̇. This case is treated symmetrically to the
previous case.

(c) r1 ≡ a and r2 ≡ b for some a,b ∈ Aδ. Suppose that γ(a,b) = c. Then we have
ACP+drt ` t1 | t2 = r1 | r2 = a | b = c, and c is a closed BPAdrt term.

(d) r1 ≡ a and r2 ≡ b for some a,b ∈ Aδ. Suppose that γ(a,b) = c. Then we have
ACP+drt ` t1 | t2 = r1 | r2 = a | b = c, and c is a closed BPAdrt term.
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(e) r1 ≡ a and r2 ≡ b for some a,b ∈ Aδ. This case is treated symmetrically to the
previous case.

(f) r1 ≡ a and r2 ≡ b for some a,b ∈ Aδ. Suppose that γ(a,b) = c. Then we have
ACP+drt ` t1 | t2 = r1 | r2 = a | b = c, and c is a closed BPAdrt term.

(g) r1 ≡ a and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic term r′2. Suppose that
γ(a,b) = c. Then we have ACP+drt ` t1 | t2 = r1 | r2 = a | b·r′2 = c·r′2, and c·r′2
is a closed BPAdrt term.

(h) r1 ≡ a·r′1 and r2 ≡ b for some a, b ∈ Aδ and some basic term r′1. This case is
treated symmetrically to the previous case.

(i) r1 ≡ a and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic term r′2. Suppose that
γ(a,b) = c. Then we have ACP+drt ` t1 | t2 = r1 | r2 = a | b·r′2 = c·r′2, and c·r′2
is a closed BPAdrt term.

(j) r1 ≡ a·r′1 and r2 ≡ b for some a, b ∈ Aδ and some basic term r′1. This case is
treated symmetrically to the previous case.

(k) r1 ≡ a and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic term r′2. Suppose that
γ(a,b) = c. Then we have ACP+drt ` t1 | t2 = r1 | r2 = a | b·r′2 = c·r′2, and c·r′2
is a closed BPAdrt term.

(l) r1 ≡ a·r′1 and r2 ≡ b for some a, b ∈ Aδ and some basic term r′1. This case is
treated symmetrically to the previous case.

(m) r1 ≡ a and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic term r′2. Suppose that
γ(a,b) = c. Then we have ACP+drt ` t1 | t2 = r1 | r2 = a | b·r′2 = c·r′2, and c·r′2
is a closed BPAdrt term.

(n) r1 ≡ a·r′1 and r2 ≡ b for some a, b ∈ Aδ and some basic term r′1. This case is
treated symmetrically to the previous case.

(o) r1 ≡ a·r′1 and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic terms r′1 and r′2.
Suppose that γ(a,b) = c. Then we have ACP+drt ` t1 | t2 = r1 |r2 = a·r′1 |b·r′2 =
c·(r′1 ‖ r′2). By the induction hypothesis there exists a closed BPAdrt term s′
such that ACP+drt ` r′1 ‖ r′2 = s′. So ACP+drt ` t1 | t2 = c·(r′1 ‖ r′2) = c·s′, and c·s′
is a closed BPAdrt term.

(p) r1 ≡ a·r′1 and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic terms r′1 and r′2.
Suppose that γ(a,b) = c. Then we have ACP+drt ` t1 | t2 = r1 |r2 = a·r′1 |b·r′2 =
c·(r′1 ‖ r′2). By the induction hypothesis there exists a closed BPAdrt term s′
such that ACP+drt ` r′1 ‖ r′2 = s′. So ACP+drt ` t1 | t2 = c·(r′1 ‖ r′2) = c·s′, and c·s′
is a closed BPAdrt term.

(q) r1 ≡ a·r′1 and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic terms r′1 and r′2.
This case is treated symmetrically to the previous case.

(r) r1 ≡ a·r′1 and r2 ≡ b·r′2 for some a,b ∈ Aδ and some basic terms r′1 and r′2.
Suppose that γ(a,b) = c. Then we have ACP+drt ` t1 | t2 = r1 |r2 = a·r′1 |b·r′2 =
c·(r′1 ‖ r′2). By the induction hypothesis there exists a closed BPAdrt term s′
such that ACP+drt ` r′1 ‖ r′2 = s′. So ACP+drt ` t1 | t2 = c·(r′1 ‖ r′2) = c·s′, and c·s′
is a closed BPAdrt term.

(s) r1 ≡ r′1 + r′′1 for some basic terms r′1 and r′′1 , and r2 is of arbitrary form. Then
ACP+drt ` t1 | t2 = r1 | r2 = (r′1 + r′′1 ) | r2 = r′1 | r2 + r′′1 | r2. By the induction
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hypothesis there exist closed BPAdrt terms p1 and p2 such that ACP+drt ` r′1|r2 =
p1 and ACP+drt ` r′′1 |r2 = p2. So, we have ACP+drt ` t1|t2 = r′1|r2+r′′1 |r2 = p1+p2,
and p1 + p2 is a closed BPAdrt term.

(t) r1 is of arbitrary form and r2 ≡ r′2 + r′′2 for some basic terms r′2 and r′′2 . This
case is treated symmetrically to the previous case.

(u) r1 ≡ σ(r′1) and r′1 a basic term, and r2 is of arbitrary form. Using Lemma
3.2.4.18 we distinguish four cases:

1. r2 = δ̇. Then we have: ACP+drt ` t1 | t2 = r1 | r2 = σ(r′1) | δ̇ = δ̇, and δ̇ is a
closed BPAdrt term.

2. r2 = ν(r2) + δ. Then ACP+drt ` t1 | t2 = r1 | r2 = σ(r′1) | (ν(r2) + δ) = δ,
and δ is a closed BPAdrt term.

3. r2 = br2cω. Then we have: ACP+drt ` t1 | t2 = r1 | r2 = σ(r′1) | br2cω =
σ(r′1) | (ν(r2) + σ(br2cω) = σ(r′1 | br2cω) = σ(r′1 | r2). By the induction
hypothesis there is a closed BPAdrt term p such that ACP+drt ` r′1 | r2 = p.
But then also ACP+drt ` t1 | t2 = σ(r′1 | r2) = σ(p), and σ(p) is a closed
BPAdrt term.

4. r2 = ν(r2) + σ(r′2) for a basic term r′2 such that n(r′2) < n(r2). Then we
have: ACP+drt ` t1 | t2 = r1 | r2 = σ(r′1) | (ν(r2)+σ(r′2)) = σ(r′1) |σ(r′2) =
σ(r′1 |r′2). By the induction hypothesis there is a closed BPAdrt term p such
that ACP+drt ` r′1 | r′2 = p. But then also ACP+drt ` t1 | t2 = σ(r′1 | r′2) = σ(p),
and σ(p) is a closed BPAdrt term.

(v) r1 is of arbitrary form and r2 ≡ σ(r′2) and r′2 a basic term. This case is treated
symmetrically to the previous case.

(xi). t ≡ t1 ‖ t2 for closed ACPdrt terms t1 and t2. Then ACP+drt ` t1 ‖ t2 = t1 ‖ t2 +
t2 ‖ t1+ t1 | t2. By (ix) and (x) there are closed BPAdrt terms p1, p2, and p3, such that
ACP+drt ` t1 ‖ t2 = p1, ACP+drt ` t2 ‖ t1 = p2, and ACP+drt ` t1 | t2 = p3. But then also
ACP+drt ` t1 ‖ t2 = t1 ‖ t2+ t2 ‖ t1+ t1 | t2 = p1+p2+p3, and p1+p2+p3 is a closed
BPAdrt term.

(xii). t ≡ ∂H(t1) for a closed ACPdrt term t1. By induction there is a closed BPAdrt term s1
such that ACP+drt ` t1 = s1. By Theorem 4.3.4.1, the elimination theorem for BPA+drt,
there is a basic term r1 such that BPA+drt ` s1 = r1. But then also, ACP+drt ` t1 = r1,
and ACP+drt ` ∂H(t1) = ∂H(r1). We prove this case by induction on the structure of
basic term r1:

(a) r1 ≡ δ̇. Then ACP+drt ` ∂H(t1) = ∂H(r1) = ∂H(δ̇) = δ̇, and δ̇ is a closed BPAdrt

term.

(b) r1 ≡ a for some a ∈ Aδ. Suppose a ∉ H. Then, ACP+drt ` ∂H(t1) = ∂H(r1) =
∂H(a) = a, and a is a closed BPAdrt term. Otherwise, a ∈ H, and we get
ACP+drt ` ∂H(t1) = ∂H(r1) = ∂H(a) = δ, and δ is a closed BPAdrt term.

(c) r1 ≡ a for some a ∈ Aδ. This case is treated analogously to case (b).

(d) r1 ≡ a·r′1 for some a ∈ Aδ and basic term r′1. Then ACP+drt ` ∂H(t1) = ∂H(r1) =
∂H(a ·r′1) = ∂H(a) ·∂H(r′1). By the induction hypothesis there exist closed
BPAdrt terms p1 and p2 such that ACP+drt ` ∂H(a) = p1 and ACP+drt ` ∂H(r′1) =
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p2. Then also ACP+drt ` ∂H(t1) = ∂H(a)·∂H(r′1) = p1·p2, and p1·p2 is a closed
BPAdrt term.

(e) r1 ≡ a·r′1 for some a ∈ Aδ and basic term r′1. This case is treated analogously
to case (d).

(f) r1 ≡ r′1 + r′′1 for closed BPAdrt terms r′1 and r′′1 . Then ACP+drt ` ∂H(t1) =
∂H(r1) = ∂H(r′1 + r′′1 ) = ∂H(r′1) + ∂H(r′′1 ). By the induction hypothesis there
exist closed BPAdrt terms p1 and p2 such that ACP+drt ` ∂H(r′1) = p1 and
ACP+drt ` ∂H(r′′1 ) = p2. Then also ACP+drt ` ∂H(t1) = ∂H(r′1)+∂H(r′′1 ) = p1+p2,
and p1 + p2 is a closed BPAdrt term.

(g) r1 ≡ σ(r′1) for some closed BPAdrt term r′1. Then ACP+drt ` ∂H(t1) = ∂H(r1) =
∂H(σ(r′1)) = σ(∂H(r′1)). By the induction hypothesis there exist a closed
BPAdrt term p such that ACP+drt ` ∂H(r′1) = p. Then also ACP+drt ` ∂H(t1) =
σ(∂H(r′1)) = σ(p), and σ(p) is a closed BPAdrt term.

�

Corollary 5.3.3.12 (Elimination for ACP+drt)
Let t be a closed ACPdrt term. Then there is a basic term s such that ACP+drt ` s = t.
Proof This follows immediately from:

(i). The elimination theorem for ACP+drt (see Theorem 5.3.3.11),

(ii). the elimination theorem for BPA+drt (see Theorem 4.3.4.1),

(iii). the fact that all axioms of BPA+drt are also contained in ACP+drt.

�

Remark 5.3.3.13 (Elimination for ACPdrt)
Elimination for a somewhat different version of ACPdrt is also claimed (without proof) in
Section 3.10 of BAETEN AND BERGSTRA [24].

Theorem 5.3.3.14 (Soundness of ACP+drt)
The set of closed ACPdrt terms modulo bisimulation equivalence is a model of ACP+drt.

Proof We use the direct method described in Proof Outline 4.2.2.1 on page 69. We only
prove soundness for the axioms of ACPdrt that have not been treated in earlier soundness
proofs. Note that to extend these proofs to ACPdrt, we have to check that the bisimula-
tions given in previous soundness proofs respect the ID predicate (as required by transfer
condition (iv.) in Definition 3.2.3.5 on page 53). However, as the fact that they do can be
easily checked, we will not give details.

Axiom DRTCM6ID Take the relation:

R = {(σ(s) | (ν(t)+ δ),δ)|s, t ∈ C(ACPdrt)}
We look at the transitions of both sides at the same time. Observe that there are no
transitions possible on the left-hand side: σ(s) | (ν(t)+ δ)3 . Also for the right-
hand side there are no transitions possible: δ3 . Finally, neither side satisfies the
ID predicate: ¬ID(σ(s) | (ν(t)+ δ)) and ¬ID(δ).
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Axiom DRTCM7ID Take the relation:

R = {((ν(s)+ δ) |σ(t),δ)|s, t ∈ C(ACPdrt)}

This case is treated symmetrically to the previous case.

Axiom DRTMID3 Take the relation:

R = {(s | δ̇, δ̇)|s ∈ C(ACPdrt)}

We look at the transitions of both sides at the same time. Observe that there are
no transitions possible on the left-hand side: s | δ̇3 . Also for the right-hand side
there are no transitions possible: δ̇3 . Finally, both sides satisfy the ID predicate:
ID(s | δ̇) and ID(δ̇).

Axiom DRTMID4 Take the relation:

R = {(δ̇ | s, δ̇)|s ∈ C(ACPdrt)}

This case is treated symmetrically to the previous case.

Axiom DRTD6 Take the relation:

R = {(∂H(δ̇), δ̇)}

We look at the transitions of both sides at the same time. Observe that there are no
transitions possible on the left-hand side: ∂H(δ̇)3 . Also for the right-hand side
there are no transitions possible: δ̇3 . Finally, both sides satisfy the ID predicate:
ID(∂H(δ̇)) and ID(δ̇).

�

Remark 5.3.3.15 (Soundness of ACPdrt)
Soundness of a somewhat different version of ACPdrt is also claimed (without proof) in
Section 3.10 of BAETEN AND BERGSTRA [24].

Theorem 5.3.3.16 (Conservativity of ACP+drt with respect to BPA+drt)
The process algebra ACP+drt is a conservative extension of the process algebra BPA+drt.

Proof In order to prove conservativity it is sufficient to verify that the following con-
ditions are satisfied:

(i). Bisimulation equivalence is definable in terms of predicate and relation symbols
only,

(ii). BPA+drt is a complete axiomatization with respect to the bisimulation equivalence
model induced by T(BPAdrt) (see Theorem 4.3.4.9),

(iii). ACP+drt is a sound axiomatization with respect to the bisimulation equivalence
model induced by T(ACPdrt) (see Theorem 5.3.3.14),

(iv). T(ACPdrt) is an operationally conservative extension of T(BPAdrt).
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And in order for T(ACPdrt) indeed to be an operationally conservative extension of
T(BPAdrt) we must verify the following conditions:

(i). T(BPAdrt) is a pure, well-founded term-deduction system in path format,

(ii). T(ACPdrt) is a term-deduction system in path format,

(iii). T(BPAdrt)⊕T(ACPdrt) is defined.

That the above properties hold can be trivially checked from the relevant definitions. �

Theorem 5.3.3.17 (Completeness of ACP+drt)
The axiom system ACP+drt is a complete axiomatization of the set of closed ACPdrt terms
modulo bisimulation equivalence.

Proof We use Verhoef’s method described in Proof Outline 4.2.3.4 on page 71. Com-
pleteness then follows immediately from:

(i). ACP+drt has the elimination property for BPAdrt (see Theorem 5.3.3.11),

(ii). ACP+drt is a conservative extension of BPA+drt (see Theorem 5.3.3.16).

�

Remark 5.3.3.18 (Completeness of ACPdrt)
Completeness of a somewhat different version of ACPdrt is also claimed (without proof)
in Section 3.10 of BAETEN AND BERGSTRA [24].

5.3.4 ACP′drt

In this section, we define a process algebra named ACP′drt, that is almost identical to
ACPdrt, except that it has thirteen additional axioms. These are chosen such that elim-
ination, soundness, and completeness results for ACP′drt follow as corollaries from the
corresponding results for ACP+drt.

Definition 5.3.4.1 (Axioms of ACP′drt)
The process algebra ACP′drt is axiomatized by the axioms of ACPdrt that are given in Defi-
nition 5.3.3.2 on page 152, Axioms USD1–USD5 shown in Table 4.5 on page 102, Axioms
USD6–USD7 shown in Table 5.16 on page 151, and Axioms USDCF, USDCM2–USDCM4,
and USDD1–USDD2 shown in Table 5.19 on the next page: ACP′drt = A1–A5 + A6ID + A7ID
+ DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID + ATS + USD + DRTM2ID–DRTM3ID +
DRTM4 + DRTM5ID + DRTM6 + DRTCM1–DRTCM5 + DRTCM6ID–DRTCM7ID + DRTCM12–
DRTCM13 + DRTCF + DRTD1–DRTD6 + DRTMID1–DRTMID4 + USD1–USD7 + USDCF +
USDCM2–USDCM4 + USDD1–USDD2.

☞ Axioms USD1–USD7, USDCF, USDCM2–USDCM4, and USDD1–USDD2 precisely corre-
spond to equalities (i)–(vii) of Proposition 5.3.3.7 on page 154 and equalities (i)–(vi) of
Proposition 5.3.3.8 on page 154. In this way, we obtain an axiomatization that is in many
ways (elimination, soundness, completeness) like ACP+drt, but is also purely equational,
i.e., does not contain conditional axioms or recursion principles.



168 5 • Axioms for Concurrency

a | b = c if γ(a,b) = c USDCF

a | b·x = (a | b)·x USDCM2

a·x | b = (a | b)·x USDCM3

a·x | b·y = (a | b)·(x ‖ y) USDCM4

∂H(a) = a if a ∉ H USDD1

∂H(a) = δ if a ∈ H USDD2

Table 5.19: Axioms for communication merge and delayable actions.

Definition 5.3.4.2 (Signature, Semantics, and Basic Terms of ACP′drt)
The signature, semantics, bisimulation, bisimulation model, and basic terms of ACP′drt

are the same as those of ACPdrt.

Corollary 5.3.4.3 (Elimination for ACP′drt)
Let t be a closed ACP′drt term. Then there is a basic term s such that ACP′drt ` t = s.

Proof In the same way as Theorem 5.3.3.11 and Corollary 5.3.3.12. Note that all equal-
ities of Propositions 5.3.3.7 and 5.3.3.8 that are used in the proof of Theorem 5.3.3.11
correspond to derivable equalities in ACP′drt. �

Corollary 5.3.4.4 (Soundness of ACP′drt)
The set of closed ACP′drt terms modulo bisimulation equivalence is a model of ACP′drt.

Proof We use the indirect method of Proof Outline 4.2.2.2 on page 70. The result fol-
lows directly from the soundness of ACP+drt (see Theorem 5.3.3.14 on page 165) combined
with the fact that Axioms USD1–USD7, USDCF, USDCM2–USDCM4, and USDD1–USDD2
are derivable in ACP+drt (see Proposition 5.3.3.7 on page 154 and Proposition 5.3.3.8 on
page 154). �

Corollary 5.3.4.5 (Completeness of ACP′drt)
The axiom system ACP′drt is a complete axiomatization of the set of closed ACP′drt terms
modulo bisimulation equivalence.

Proof We use the indirect method of Proof Outline 4.2.3.2 on page 71. Careful inspec-
tion of the dependencies between the proofs in this section reveals that the proof of The-
orem 5.3.3.17 only relies upon RSP(USD) to ensure Proposition 5.3.3.7(i)–(vii) and Propo-
sition 5.3.3.8(i)–(vi). So, we obviously do not need RSP(USD) anymore if we add the corre-
sponding Axioms USD1–USD7, USDCF, USDCM2–USDCM4, and USDD1–USDD2, and the
result follows. �

5.3.5 ACP′′drt

In this section, we define a process algebra named ACP′′drt, that is almost identical to
ACP′drt, except that we have removed Axioms USDCF, USDCM2–USDCM4, and USDD1–
USDD2 and introduced two new axioms that make the removed six axioms derivable.
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Definition 5.3.5.1 (Axioms of ACP′′drt)
The process algebra ACP′′drt is axiomatized by the axioms of ACP′drt that are given in Def-
inition 5.3.4.1 on page 167, minus Axioms USDCF and USDCM2–USDCM4, plus Axioms
USD8 and USD9 shown in Table 5.20: ACP′′drt = A1–A5 + A6ID + A7ID + DRT1–DRT5 +
DRTSID + DCS1–DCS4 + DCSID + ATS + USD + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID
+ DRTM6 + DRTCM1–DRTCM5 + DRTCM6ID–DRTCM7ID + DRTCM12–DRTCM13 + DRTCF
+ DRTD1–DRTD6 + DRTMID1–DRTMID4 + USD1–USD9.

bx | ycω= bxcω| bycω USD8

b∂H(x)cω= ∂H(bxcω) USD9

Table 5.20: Additional axioms for unbounded start delay.

☞ Axiom USD8 expresses that the unbounded start delay distributes over the communi-
cation merge. As we will show, this enables us to derive the equalities of Axioms USDCF
and USDCM2–USDCM4.

Axiom USD9 expresses that the unbounded start delay commutes with the encapsu-
lation. This enables us to derive the equalities of Axioms USDD1 and USDD2.

Remark 5.3.5.2 (ACP′drt versus ACP′′drt)
ACP′′drt is very much like ACP′drt, except that it has fewer and easier axioms. Keep in mind
however, that the additional axioms of ACP′drt were derived in a systematic manner (which
can be generalized), while Axioms USD8 and USD9 are based on ad hoc insight (which
cannot).

Definition 5.3.5.3 (Signature, Semantics, and Basic Terms of ACP′′drt)
The signature, semantics, bisimulation, bisimulation model, and basic terms of ACP′′drt

are the same as those of ACPdrt.

Proposition 5.3.5.4 (Properties of ACP′′drt)
For ACP′′drt terms x and y and any a,b, c ∈ Aδ, we have the following equalities:

(i). ACP′′drt ` a | b = c if γ(a,b) = c
(ii). ACP′′drt ` a | b·x = (a | b)·x
(iii). ACP′′drt ` a·x | b = (a | b)·x
(iv). ACP′′drt ` a·x | b·y = (a | b)·(x ‖ y)
(v). ACP′′drt ` ∂H(a) = a if a ∉ H

(vi). ACP′′drt ` ∂H(a) = δ if a ∈ H

Proof

(i). ACP′′drt ` a | b = bacω| bbcω= ba | bcω= bccω= c
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(ii). ACP′′drt ` a | b·x = bacω | bbcω·x = bacω | bb·xcω = ba | b·xcω = b(a | b)·xcω =
b(a | b)cω·x = (bacω| bbcω)·x = (a | b)·x

(iii). ACP′′drt ` a·x | b = bacω·x | bbcω = ba·xcω | bbcω = ba·x | bcω = b(a | b)·xcω =
b(a | b)cω·x = (bacω| bbcω)·x = (a | b)·x

(iv). ACP′′drt ` a · x | b ·y = bacω· x | bbcω·y = ba·xcω | bb·ycω = ba·x | b·ycω =
b(a | b)·(x ‖ y)cω= b(a | b)cω·(x ‖ y) = (bacω| bbcω)·(x ‖ y) = (a | b)·(x ‖ y)

(v). ACP′′drt ` ∂H(a) = ∂H(bacω) = b∂H(a)cω= bacω= a
(vi). ACP′′drt ` ∂H(a) = ∂H(bacω) = b∂H(a)cω= bδcω= δ

�

☞ Note that the equalities of Proposition 5.3.5.4 on the page before correspond precisely
to the equalities of Proposition 5.3.3.8 on page 154.

Corollary 5.3.5.5 (Elimination for ACP′′drt)
Let t be a closed ACP′′drt term. Then there is a basic term s such that ACP′′drt ` t = s.

Proof In the same way as Theorem 5.3.3.11 and Corollary 5.3.3.12. Note that all equal-
ities of Propositions 5.3.3.7 and 5.3.3.8 that are used in the proof of Theorem 5.3.3.11
correspond to derivable equalities in ACP′′drt. �

☞ As Axioms USD8 and USD9 have not previously been shown to be derivable for closed
terms, we cannot use Proof Outline 4.2.2.2 on page 70 to prove soundness. So, we prove
their soundness separately.

Theorem 5.3.5.6 (Soundness of USD8 and USD9)
The set of closed ACPdrt terms modulo bisimulation equivalence is a model of Axioms USD8
and USD9.

Proof We use the direct method described in Proof Outline 4.2.2.1 on page 69.

Axiom USD8 Take the following relation:

R = {(s, s), (bs | tcω, bscω | btcω)|s ∈ C(ACPdrt)
}

First we look at the transitions of the left-hand side:

(i). Suppose bs | tcω a→ p. By inspection of the deduction rules we distinguish the
following cases:

(a) s b→ p1, t c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then bscω b→ p1 and btcω c→ p2,
so bscω| btcω a→ p1 ‖ p2, and (p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) s b→√, t c→ p2, γ(b, c) = a, and p ≡ p2. Then bscω b→√ and btcω c→ p2, so
bscω | btcω a→ p2, and (p2, p2) ∈ R.

(c) s b→ p1, t c→√, γ(b, c) = a, and p ≡ p1. Then bscω b→ p1 and btcω c→√, so
bscω | btcω a→ p1, and (p1, p1) ∈ R.
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(ii). Suppose bs | tcω a→√. By inspection of the deduction rules we can conclude
that s b→√, t c→√, and γ(b, c) = a. Then we have bscω b→√ and btcω c→√, so
bscω | btcω a→√.

(iii). Suppose bs | tcω σ→ p. By inspection of the deduction rules we can conclude that
p ≡ bs | tcω. We also have bscω|btcω σ→ bscω|btcω, and (bs | tcω, bscω|btcω) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose bscω | btcω a→ p. By inspection of the deduction rules we distinguish
the following cases:

(a) s b→ p1, t c→ p2, γ(b, c) = a, and p ≡ p1 ‖ p2. Then bs | tcω c→ p1 ‖ p2, and
(p1 ‖ p2, p1 ‖ p2) ∈ R.

(b) s b→√, t c→ p2, γ(b, c) = a, and p ≡ p2. Then bs | tcω a→ p2, and (p2, p2) ∈ R.

(c) s b→ p1, t c→√, γ(b, c) = a, and p ≡ p1. Then bs | tcω a→ p1, and (p1, p1) ∈ R.

(ii). Suppose bscω| btcω a→√. By inspection of the deduction rules we can conclude
that s b→√, t c→√, and γ(b, c) = a. Then bs | tcω a→√, and we are done.

(iii). Suppose bscω| btcω σ→ p. By inspection of the deduction rules we can conclude
that p ≡ bscω| btcω. We also have bs | tcω σ→bs | tcω, and (bs | tcω, bscω| btcω) ∈
R.

Finally, we look at the immediate-deadlock predicate. Neither side has immediate
deadlock: ¬ID(bs | tcω) and ¬ID(bscω | btcω) (note that unbounded start delay re-
moves immediate deadlock, see the comment on page 57).

Axiom USD9 Take the following relation:

R = {(s, s), (b∂H(s)cω, ∂H(bxcω))|s ∈ C(ACPdrt)
}

First we look at the transitions of the left-hand side:

(i). Suppose b∂H(s)cω a→ p. Then necessarily we have s a→ p1, a ∉ H, and p ≡
∂H(p1). Therefore bscω a→ p1, and also ∂H(bscω) a→ ∂H(p1), and note that
(∂H(p1), ∂H(p1)) ∈ R.

(ii). Suppose b∂H(s)cω a→√. Then necessarily we have s a→√ and a ∉ H. Therefore
bscω a→√, and also ∂H(bscω) a→

√
.

(iii). Suppose b∂H(s)cω σ→ p. Then necessarily we have p ≡ b∂H(s)cω. Furthermore,
we have ∂H(bscω) σ→ ∂H(bscω), and note that (b∂H(s)cω, ∂H(bscω) ∈ R.

Secondly, we look at the transitions of the right-hand side:

(i). Suppose ∂H(bscω) a→ p. Then necessarily we have s a→ p1, a ∉ H, and p ≡
∂H(p1). Therefore ∂H(s)

a→ ∂H(p1), and also b∂H(s)cω a→ ∂H(p1), and note
that (∂H(p1), ∂H(p1)) ∈ R.

(ii). Suppose ∂H(bscω) a→√. Then necessarily we have s a→√ and a ∉ H. Therefore
∂H(s)

a→√, and also b∂H(s)cω a→√.

(iii). Suppose ∂H(bscω) σ→ p. Then necessarily we have p ≡ ∂H(bscω). Furthermore,
we have b∂H(s)cω σ→b∂H(s)cω, and note that (b∂H(s)cω, ∂H(bscω) ∈ R.
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Finally, we look at the immediate-deadlock predicate. Neither side has immediate
deadlock: ¬ID(b∂H(s)cω) and ¬ID(∂H(bscω).

�

Corollary 5.3.5.7 (Soundness of ACP′′drt)
The set of closed ACP′′drt terms modulo bisimulation equivalence is a model of ACP′′drt.

Proof We use the indirect method of Proof Outline 4.2.2.2 on page 70. The result fol-
lows directly from the soundness of ACP+drt (see Theorem 5.3.3.14 on page 165) combined
with the facts that Axioms USD1–USD7 are derivable in ACP+drt (see Proposition 5.3.3.7
on page 154 and Proposition 5.3.3.8 on page 154), and that Axioms USD8 and USD9 are
sound (see Theorem 5.3.5.6 on page 170). �

Corollary 5.3.5.8 (Completeness of ACP′′drt)
The axiom system ACP′′drt is a complete axiomatization of the set of closed ACP′′drt terms
modulo bisimulation equivalence.

Proof We use the indirect method of Proof Outline 4.2.3.2 on page 71. Careful inspec-
tion of the dependencies between the proofs in this section reveals that the proof of The-
orem 5.3.3.17 only relies upon RSP(USD) to ensure Proposition 5.3.3.7(i)–(vii) and Proposi-
tion 5.3.3.8(i)–(vi). So, we obviously do not need RSP(USD) anymore if we add the Axioms
USD1–USD9 from which the needed properties are derivable (see Proposition 5.3.5.4 on
page 169), and the result follows. �

5.4 Properties

In this section, we list (without proof) a number of properties of the process algebras we
have treated in this chapter.

Remark 5.4.1.1 (Axioms of Standard Concurrency)
For all process algebras described in this chapter, the axioms of standard concurrency
(see Property 2.6.1.11 on page 37) hold.

Remark 5.4.1.2 (Time Determinism)
For all process algebras described in this chapter, the time-determinism property (see
Property 3.3.1.1 on page 65) holds.

Remark 5.4.1.3 (Embeddings)
The following embeddings hold between the process algebras given in this chapter, and
between them and the process algebras given in previous chapters:

(i). PAδ ⊆ PA−drt–ID

(ii). PAδ̇ ⊆ PAdrt

(iii). PA−drt–ID ⊆ PAdrt ⊆ PA+drt

(iv). PA−drt–ID ⊆ PA−drt–ID′, PA−drt–ID′ ⊆ PA−drt–ID
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(v). PA+drt ⊆ PA′drt, PA′drt ⊆ PA+drt

(vi). ACP ⊆ ACP−drt–ID

(vii). ACPδ̇ ⊆ ACPdrt

(viii). ACP−drt–ID ⊆ ACPdrt ⊆ ACP+drt

(ix). ACP−drt–ID ⊆ ACP−drt–ID′, ACP−drt–ID′ ⊆ ACP−drt–ID

(x). ACP+drt ⊆ ACP′drt, ACP′drt ⊆ ACP+drt

(xi). ACP+drt ⊆ ACP′′drt, ACP′′drt ⊆ ACP+drt

(xii). ACP′drt ⊆ ACP′′drt, ACP′′drt ⊆ ACP′drt

(xiii). BPA−drt–ID ⊆ PA−drt–ID ⊆ ACP−drt–ID

(xiv). BPAdrt ⊆ PAdrt ⊆ ACPdrt

(xv). BPA+drt ⊆ PA+drt ⊆ ACP+drt

The embeddings of (i) and (vi) are achieved by projecting the untimed process a onto the
undelayable process a for a ∈ Aδ, and everything else onto itself.

The embeddings of (ii) and (vii) can be achieved in two different ways: either by pro-
jecting the untimed process a onto the undelayable process a for a ∈ Aδ, and everything
else onto itself, or by projecting the untimed process a onto the delayable process a for
a ∈ Aδ, and everything else onto itself.

All other embeddings are achieved by projecting everything onto itself.

5.5 Conclusions

To begin with, we are reasonably confident that the process algebras listed in Chapter 4
and Chapter 5 are sound and complete.

Before we started this work, we were also confident of the soundness and complete-
ness of these axiomatizations, but at that time wrongly so. We discovered that the ax-
iomatizations we started out with, most of which have been published and claimed sound
and complete before, were neither sound nor complete. We highlight two characteristic
cases:

• Weakening Axiom DRT4A to Axiom DRT4 brings the need to introduce Axiom
DRT5, something we did not realize at first. This left all interesting process algebras
incomplete. Only when Axiom DRT5 was needed in the proof of Lemma 4.3.4.7(iv),
we found out about this mistake.

• Introducing the immediate deadlock in a context that supports communication
brings the need to weaken Axiom DRTCM6 to Axiom DRTCM6ID, something we did
not realize due to the “intuitive” and “obvious” nature of DRTCM6. This left some
theories unsound. We found out this problem after we could not complete the last
few “trivial details” of the proof of Theorem 5.3.3.14.
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Both these problems were discovered when we were writing out all details of “trivial”
proofs, proofs which we had originally not planned to do at all. So, we eventually decided
to give as much and as detailed proofs as reasonably manageable. And, as to be expected,
we found some more mistakes like the ones listed above. As a side-result, we gained
insight into the various aspects of axiomatizations.

Firstly, when we weigh the merits of the “ν/σ-axiomatization style” of BAETEN AND RE-
NIERS [35] (with theories like PA−drt–ID and ACP−drt–ID) against those of the “classic axiom-
atization style” of BAETEN AND BERGSTRA [24] (with theories like PA−drt–ID′and ACP−drt–ID′),
we conclude that the ν/σ-style is better suited towards practical applications, as it makes
calculations easier. However, from a theoretical viewpoint this style is troublesome: it
does not lend itself well to term-rewriting system analysis, and worse, it does not seem
to be compatible with the addition of the empty process, as we will show in Chapter 6.
On the other hand, the classic style is not ideal either. It appears less intuitive, and it
needs more axioms. Compare for example Axioms DRTM5 and DRTM6 of Table 5.2 on
page 106 with Axioms DRTM7–DRTM11 of Table 5.4 on page 113. Here the classic style
needs five axioms to do what the ν/σ-style can do much clearer in two axioms. Conse-
quently, calculations in the classic style are much longer too.

Second, we have shown how to eliminate the recursion principle RSP(USD) from the
process algebras that contain it. As shown in Section 4.3.5, Section 5.3.2, and Section
5.3.4, one can straightforwardly derive unconditional axioms to replace the conditional
axiom RSP(USD). The recipe is always the same: identify in the completeness proof of the
conditional theory the places where RSP(USD) is used, put those applications in a sepa-
rate lemma, and introduce an axiom for every clause of that lemma. Using this recipe, we
introduced Axioms USD1–USD7, USDCF, and USDCM2–USDCM4. The advantage is clear:
having a fully unconditional axiomatization enables us to reason fully algebraically, giv-
ing us a fuller apparatus of methods to work with. On the other hand, the principle
RSP(USD) is clean, neat, and simple, and can be applied in any process algebra, while
the “USD axiomatization style” requires new axioms for every new process algebra. That
this can lead to unwieldy theories can be observed from BAETEN AND BERGSTRA [24]. We
feel that the “RSP(USD) axiomatization style”, which till now has only appeared in BAETEN

AND BERGSTRA [23], BAETEN AND RENIERS [35], and RENIERS AND VEREIJKEN [180], deserves
a wider audience.

Third, we find that the absence of the empty process (a constant ε such that ε·x = x =
x·ε) in the discrete-time process algebras we have treated so far, is a major nuisance. To
begin with, the empty process would allow us to express our axioms much more com-
pactly. For example, Axiom DRTM2 would be just an instance of Axiom DRTM3 if the
x in the latter could take the value ε. Similarly, Axioms DRTCM2–DRTCM4 could also
be collapsed to just one axiom with the help of ε (and see BAETEN AND BERGSTRA [26]
for a process algebra in which it is hard to find any axiom that could not be formulated
better with the help of the empty process!). The absence of ε is even felt worse when
doing calculations. If we look for example at the proof of Theorem 5.3.3.11 on page 159,
we see we have to distinguish 49 cases(!) when doing simultaneous induction on two
variables, as a basic term in ACPdrt can take seven essentially different forms. With the
help of ε, we could reduce this to five forms, and only 25 cases would have to be consid-
ered when doing induction on two variables. Similar considerations hold for the proof
of Theorem 5.2.3.10 on page 127, where the absence of ε in one case even forces us into
a sixteen-fold increase in proof obligations.



5.5 • Conclusions 175

We conclude that there is a clear need for the empty process in discrete-time process
algebra. In Chapter 6 we will introduce the empty process in the setting of BPA−drt–ID, and
examine some of the issues that arise.

Then, we hope that Chapter 3, Chapter 4, and Chapter 5 can serve as a reference point:
to our knowledge this is the first work that list so many discrete-time process algebra
theories, together with all relevant definitions and elementary theorems. Furthermore,
as all proofs in these chapters are constructive, it should now be easy to develop a tool
that can automatically rewrite two bisimilar ACPdrt terms into one another.

Finally, note that we have surveyed several distinct methods for proving soundness
and completeness. To prove soundness we have used:

• the direct method (see Proof Outline 4.2.2.1 on page 69),

• the indirect method (see Proof Outline 4.2.2.2 on page 70), and,

• the ground equivalence method (see Proof Outline 4.2.2.3 on page 70).

To prove completeness we have used:

• the direct method (see Proof Outline 4.2.3.1 on page 70),

• the indirect method (see Proof Outline 4.2.3.2 on page 71),

• the ground equivalence method (see Proof Outline 4.2.3.3 on page 71), and,

• Verhoef’s method (see Proof Outline 4.2.3.4 on page 71).

We believe that this spectrum of methods provides a convenient starting point to prove
soundness and completeness of most (timed) process algebras that have been described
in the literature, with the exception of theories that support abstraction.

As far as future research is concerned: we would like to generalize our results to a
setting that includes abstraction. This seems however not at all trivial, and may require
a substantial effort. In BAETEN, BERGSTRA, AND RENIERS [29], a first attempt is made at
proving soundness and completeness for discrete-time abstract process algebras.





6
Adding the Empty Process

6.1 Introduction

One of the main features of process algebra is its modularity: it is relatively easy to add
features for specific purposes, and, given two of such extensions, it is often straightfor-
ward to combine them into one process algebra.

In the past, the feature of the empty process (see Section 2.3.3), the process that does
nothing, and terminates successfully (in contrast with the deadlock process, which does
nothing, and terminates unsuccessfully), has been studied extensively (BAETEN AND VAN

GLABBEEK [31], KOYMANS AND VRANCKEN [122], and VRANCKEN [196, 197]).

As already mentioned in the previous chapters, recently there has been described an
elegant and coherent way to incorporate discrete-time extensions into the process-algebra
framework (BAETEN AND BERGSTRA [21, 24, 25], BAETEN AND RENIERS [35], RENIERS AND

VEREIJKEN [180]), and a case study has been made (BOS AND RENIERS [53]).

Given the fact that both extensions, empty process and discrete time, have been re-
searched very well, it seemed reasonable to study how these two extensions go together.
This is especially important, as the empty process does have great advantages in the spec-
ification of protocols. For example, a stack over an infinite data type can only be spec-
ified in finitely many equations (three, to be exact), when we have the empty process at
our disposal (KOYMANS AND VRANCKEN [122]). Furthermore, the empty process is needed
to give a process-algebra based semantics to the specification languages SDL (see ITU-T
[102]) and MSC (see ITU-TS [103, 104, 105, 106], and the dissertation of RENIERS [179]),
and hence a timed empty process is needed to give such a semantics to timed variants
of these languages.

But, as the introduction of the empty process has historically often been viewed as
troublesome, the modular combination of it with other features has hardly been studied.
In this chapter, we remedy this situation for discrete-time process algebra with relative
timing.

177
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6.2 Design Goals for the Discrete-Time Empty Process

Often, when extending an already existing process algebra with some additional constant
or operator, one has a lot of “maneuvering room” to make choices regarding the exact
implementation and the fine details of its behavior. For example, a very broad class of
“deadlock-like” processes has been described in the literature. To name a few variants (in
order of increasing degree of catastrophe): “classic” (δ, see BAETEN AND WEIJLAND [38] or
Section 2.3.2 of this thesis), “immediate” (δ̇, see BAETEN AND BERGSTRA [24, 25] or Sec-
tion 2.3.5 of this thesis), “inconsistent state” (⊥, see BAETEN AND BERGSTRA [26]), and
“true zero” (0, see BAETEN AND BERGSTRA [14, 19]). A similar observation holds for the
implementation of the concept “choice”: half a dozen versions, ranging from completely
deterministic to completely non-deterministic have been described.

It appears that the concept “empty process” is different; it leaves little room for dif-
fering implementations.

When we started thinking about the process that “does nothing” and terminates suc-
cessfully (in the context of discrete-time process algebra), we had three design goals in
mind for the empty process:

(i). it should be a unit element with respect to the ·and ‖ operators,

(ii). it ought not to destroy the commutativity and associativity of the ‖ and | operators,

(iii). it ought not to destroy the weak time-factorization property.

These properties we deemed essential; violating one of them would render our empty
process useless. And, as it turned out, these goals very much restricted our freedom in
choosing our definitions. In this chapter, we will motivate our choices on the grounds of
the above design goals.

Finally, we had a few other design goals of lesser importance; we wanted that the ex-
isting “smaller” process algebras (without empty process, without time, or without either)
could be embedded in the new process algebras in a simple way (i.e., in the terminology of
BAETEN AND BERGSTRA [19], the old process algebras should be Subalgebras of a Reduced
Model (SRM’s) of the new process algebras).

6.3 Process Algebras with Undelayable Actions

We introduce the process algebras BPA−drt,ε–ID, PA−drt,ε–ID, and ACP−drt,ε–ID that contain the
empty process. These are all based on BPA−drt–ID, and hence do not contain delayable
actions or the immediate deadlock.

6.3.1 BPA−drt,ε–ID

In this section, we define the process algebra BPA−drt,ε–ID, which is basically the process
algebra BPA−drt–ID of Section 3.2.2, extended with the empty process (indicated by the
subscript “ε”).
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Definition 6.3.1.1 (Signature of BPA−drt,ε–ID)
The signature of BPA−drt,ε–ID consists of the undelayable actions {a|a ∈ A}, the unde-
layable deadlock constant δ, the time-unit delay constant σ, the undelayable empty pro-
cess constant ε, the alternative composition operator +, the sequential composition oper-
ator ·, and the “now” operator νrel.

Remark 6.3.1.2 (The Undelayable Empty Process and the Time-Unit Delay Constant)
The undelayable empty process ε in the signature of BPA−drt,ε–ID has the intuitive meaning
of doing nothing, and then terminating successfully. As such, it is a proper unit element
of the sequential composition: ε·x = x·ε = x.

Now that we have a unit element, we do not need the time-unit delay operator any-
more. This is because we can replace it by the time-unit delay constant σ (intuitively:
σ = σrel(ε)), the process that can move on to the following time-slice, and terminate
there. The process formerly expressed as σrel(x) can now be represented by σ ·x, as,
intuitively, σrel(x) = σrel(ε·x) = σrel(ε)·x = σ·x.

Definition 6.3.1.3 (Axioms of BPA−drt,ε–ID)
The process algebra BPA−drt,ε–ID is axiomatized by the axioms of BPA given in Defini-
tion 2.3.1.6 on page 8, and Axioms DRTE1–DRTE4, TF, and DCSE1–DCSE4 shown in Ta-
ble 6.1: BPA−drt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4.

x+ δ = x DRTE1

δ·x = δ DRTE2

x·ε = x DRTE3

ε·x = x DRTE4

σ·x+σ·y = σ·(x+ y) TF

νrel(ε) = ε DCSE1

νrel(x+ y) = νrel(x)+ νrel(y) DCSE2

νrel(a·x) = a·x DCSE3

νrel(σ·x) = δ DCSE4

Table 6.1: Additional axioms for BPA−drt,ε–ID.

☞ The undelayable deadlock behaves as expected: Axioms DRTE1 and DRTE2 are the
discrete-time counterparts of Axioms A6 and A7 of Table 2.5 on page 14. Axioms DRTE3
and DRTE4 express that the undelayable empty process is a unit element with respect to
the sequential composition.

When we compare BPA−drt,ε–ID with BPA−drt–ID, the presence of the undelayable empty
process allows for two simplifications in the axioms. First, to express the weak time-
factorization property associated with σ, formerly done by Axiom DRT1, we now use
Axiom TF. Secondly, the purpose of Axiom DRT2 disappears, as it becomes a special case
of Axiom A5, the associativity of sequential composition: (σ·x)·y = σ·(x·y).
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Finally, Axioms DCSE1–DCSE4 express the properties of the “now” operator in a con-
text with the undelayable empty process. Note that we do not anymore have thatν(x·y) =
ν(x)·y, as that would lead to ν(σ) = ν(ε·σ) = ν(ε)·σ = ε·σ = σ, which is of course un-
desirable. Otherwise, Axioms DCSE1–DCSE4 behave very much like their BPA−drt–ID coun-
terparts DCS1–DCS4 from Table 3.4 on page 47.

Definition 6.3.1.4 (Semantics of BPA−drt,ε–ID)
The semantics of BPA−drt,ε–ID are given by the term-deduction system T(BPA−drt,ε–ID), in-
duced by the deduction rules for BPA−drt,ε–ID shown in Table 6.2.

a a→ ε σ σ→ ε ε↓

x a→ x′
x+ y a→ x′

y a→ y′
x+ y a→ y′

x↓
(x+ y)↓

y↓
(x+ y)↓

x a→ x′
x·y a→ x′·y

x↓, y a→ y′
x·y a→ y′

x↓, y↓
(x·y)↓

x σ→ x′, y σ→ y′
x+ y σ→ x′ + y′

x σ→ x′, y σ
3

x+ y σ→ x′
x σ3 , y σ→ y′
x+ y σ→ y′

x σ→ x′, x↓ô
x·y σ→ x′·y

x σ→ x′, y σ
3

x·y σ→ x′·y
x σ3 , x↓, y σ→ y′
x·y σ→ y′

x σ→ x′, x↓, y σ→ y′
x·y σ→ x′·y+ y′

x a→ x′
νrel(x)

a→ x′
x↓

νrel(x)↓

Table 6.2: Deduction rules for BPA−drt,ε–ID.

☞ Many of these deduction rules are already familiar from either BPAε or BPA−drt–ID, so
we need not elaborate on them. The deduction rules for the sequential composition with
respect to time transitions, shown in Table 6.2, however, are very subtle. We will try to
provide the intuition behind them with an example.

Consider the expression (σ·a+ ε)·(σ·b). Algebraically, we have:

(σ·a+ ε)·(σ·b) = σ·a·σ·b+ ε·σ·b
= σ·a·σ·b+σ·b
= σ·(a·σ·b+ b)

therefore, in our model we should have (σ·a+ ε)·(σ·b) σ→ a·σ·b+ b and in particular
we should not have (σ·a+ε)·(σ·b) σ→ a·σ·b, as such a transition would lose the option
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to do just a b, while the principle of weak time factorization mentioned before explicitly
forbids that a time transition determines a choice here.

To obtain such behavior in our term-deduction system, we need four rules to define
the interaction between time transitions and the sequential composition. The first two
express that if x can do a σ-step to x′, then x·y can do a σ-step to x′·y, provided either
x does not have option to terminate, or y cannot do a σ-step. The fourth rule expresses
that if this provision is not met, we get the behavior as sketched in the example above.
These three rules together cover all cases where x can do a σ-step.

Remains the case that x cannot do a σ-step. If that is so, and x also does not have the
option to terminate, then obviously x·y cannot do a σ-step, and hence there is no rule
for this case. If x does have the option to terminate, and y can do a σ-step to y′, then x·y
can do a σ-step to y′, as is expressed by the third rule. Finally, if x does have the option
to terminate, but y cannot do a σ-step, then again x·y cannot do a σ-step, so there is no
rule for that case either.

Theorem 6.3.1.5 (Time Determinism for BPA−drt,ε–ID)
Let x, y, and y′ be closed BPA−drt,ε–ID terms. Then we have:

T(BPA−drt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

Proof Suppose that T(BPA−drt,ε–ID) î x σ→ y, x σ→ y′. We proceed by induction on the
number of symbols in x, using case distinction on the form of x. For every case we either
derive, by inspection of the deduction rules, that y ≡ y′, or arrive at a contradiction,
indicating that the case under consideration does not occur.

(i). x ≡ ε. In contradiction with T(BPA−drt,ε–ID) î x σ→ y.

(ii). x ≡ a for some a ∈ Aδ. In contradiction with T(BPA−drt,ε–ID) î x σ→ y.

(iii). x ≡ σ. Then y ≡ y′ ≡ ε (this is the base case of the induction).

(iv). x ≡ s·t for closed BPA−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(BPA−drt,ε–ID) î s σ→ s′, s↓, t σ→ t′ (where, by the induction hypothesis, s′ and
t′ are unique). Then y ≡ y′ ≡ s′·t+ t′.

(b) T(BPA−drt,ε–ID) î s σ→ s′ otherwise (where s′ is unique). Then y ≡ y′ ≡ s′·t.
(c) T(BPA−drt,ε–ID) î s σ3 , s↓, t σ→ t′ (where t′ is unique). Then y ≡ y′ ≡ t′.
(d) T(BPA−drt,ε–ID) î s σ3 otherwise. In contradiction with x σ→ y.

(v). x ≡ s+ t for closed BPA−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(BPA−drt,ε–ID) î s σ→ s′, t σ→ t′ (where s′ and t′ are unique). Then y ≡ y′ ≡ s′+t′.
(b) T(BPA−drt,ε–ID) î s σ→ s′, t σ3 (where s′ is unique). Then y ≡ y′ ≡ s′.
(c) T(BPA−drt,ε–ID) î s σ3 , t σ→ t′ (where t′ is unique). Then y ≡ y′ ≡ t′.
(d) T(BPA−drt,ε–ID) î s σ3 , t σ3 . In contradiction with x σ→ y.

(vi). x ≡ ν(s) for a closed BPA−drt,ε–ID term s. In contradiction with T(BPA−drt,ε–ID) î
x σ→ y.

Having inspected all possible cases, we may now conclude that y ≡ y′. �
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Definition 6.3.1.6 (Bisimulation for BPA−drt,ε–ID)
Bisimulation for BPA−drt,ε–ID is defined as follows; a binary relation R on process terms is
a bisimulation iff the following transfer conditions hold for all process terms p and q:

(i). If RS(p,q) and p u→ p′, where u ∈ Aσ , then there exists a process term q′ such that
q u→ q′ and RS(p′, q′),

(ii). If RS(p,q) and p↓, then q↓.
Definition 6.3.1.7 (Bisimulation Model for BPA−drt,ε–ID)
The bisimulation model for BPA−drt,ε–ID is defined in the same way as for BPA. Replace
“BPA” by “BPA−drt,ε–ID” in Definition 2.3.1.16 on page 12.

Definition 6.3.1.8 (Basic Terms of BPA−drt,ε–ID)
We define (σ, δ, ε)-basic terms inductively as follows:

(i). The constant ε is a (σ,δ, ε)-basic term,

(ii). if a ∈ Aδ and t is a (σ,δ, ε)-basic term, then a·t is a (σ,δ, ε)-basic term,

(iii). if s and t are (σ,δ, ε)-basic terms, then s+ t is a (σ,δ, ε)-basic term,

(iv). if t is a (σ,δ, ε)-basic term, then σ·t is a (σ,δ, ε)-basic term.

From now on, when we speak of basic terms in the context of BPA−drt,ε–ID, we mean (σ,δ,
ε)-basic terms.

Example 6.3.1.9 (Basic Terms of BPA−drt,ε–ID)
The following are basic terms of BPA−drt,ε–ID: δ·ε, a·ε, a·(b·c·ε + d·ε). Note, however,
that the following are not basic terms: δ, a, a·(b+ c).
Definition 6.3.1.10 (Number of Symbols of a BPA−drt,ε–ID Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(ε) = n(σ) = 1,

(ii). for a ∈ Aδ, we define n(a) = 1,

(iii). for closed BPA−drt,ε–ID terms x and y, we define n(x+y) = n(x·y) = n(x)+n(y)+1,

(iv). for a closed BPA−drt,ε–ID term x we define n(νrel(x)) = n(x)+ 1.

Theorem 6.3.1.11 (General Form of Basic Terms of BPA−drt,ε–ID)
Modulo the commutativity and associativity of the +, all basic terms t of BPA−drt,ε–ID are of
the form:

t ≡
∑
i<m
ai·si +

∑
j<n
σ·uj +

∑

k<p
ε

for m,n,p ∈ N, m+ n+ p ≥ 1, ai ∈ Aδ, and basic terms si and uj.

Proof Trivial, by inspection of the definition of basic terms, Definition 6.3.1.8. Observe
that the general form of basic terms is closed under the formation rules given in Defini-
tion 6.3.1.8. Note that by our summation convention, Definition 3.2.2.7 on page 49, the
above general form never contains a summand δ. �
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Lemma 6.3.1.12 (Representation of BPA−drt,ε–ID Terms)
Let t be a basic term. Then either BPA−drt,ε–ID ` t = ν(t), or there exists a basic term s
such that BPA−drt,ε–ID ` t = ν(t)+σ·s and n(s) < n(t).

Proof Let t be a basic term. By Theorem 6.3.1.11, we may now proceed by case analysis
on the general form of basic terms:

(i). Either we have no σ·uj summands (n = 0 in Definition 6.3.1.11):

t ≡
∑
i<m
ai·si +

∑

k<p
ε

for m,p ∈ N, m + p ≥ 1, ai ∈ Aδ, and basic terms si. Then we have the following
computation:

BPA−drt,ε–ID ` t =
∑
i<m
ai·si +

∑

k<p
ε =

∑
i<m
ν(ai·si)+

∑

k<p
ν(ε) =

ν


∑
i<m
ai·si +

∑

k<p
ε


 = ν(t)

(ii). Or we have at least one σ·uj summand (n ≥ 1 in Definition 6.3.1.11):

t ≡
∑
i<m
ai·si +

∑
j<n
σ·uj +

∑

k<p
ε

form,n,p ∈ N,m+n+p ≥ 1, ai ∈ Aδ, and basic terms si and uj. Then we have the
following computation:

BPA−drt,ε–ID ` t =
∑
i<m
ai·si +

∑
j<n
σ·uj +

∑

k<p
ε =

∑
i<m
ai·si + δ+

∑

k<p
ε+

∑
j<n
σ·uj =

∑
i<m
ν(ai·si)+

∑
j<n
ν(σ·uj)+

∑

k<p
ν(ε)+σ·


∑
j<n
uj


 =

ν


∑
i<m
ai·si +

∑
j<n
σ·uj +

∑

k<p
ε


+σ·


∑
j<n
uj


 =

ν(t)+σ·s
Where we define:

s ≡
∑
j<n
uj

Note that n(s) < n(t) is now trivially satisfied, as for every summand uj of s, there
is a corresponding summand σ ·uj of t, and at least one such summand exists as
n ≥ 1.

�
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☞ The main use of Lemma 6.3.1.12 will be in induction proofs regarding the (not yet
treated) process algebras PA−drt,ε–ID and ACP−drt,ε–ID (see Sections 6.3.2 and 6.3.3).

Definition 6.3.1.13 (Alternative Normal Form for BPA−drt,ε–ID)
We define the alternative normal form (ANF) terms of BPA−drt,ε–ID inductively as follows:

(i). The constant δ is an ANF term,

(ii). the constant ε is an ANF term,

(iii). if a ∈ Aδ and s and t are ANF terms, then a·s+ t is an ANF term,

(iv). if t is an ANF term, then σ·t is an ANF term,

(v). if t is an ANF term, then σ·t+ ε is an ANF term.

☞ Note that by this definition, an ANF term contains a most one ε summand, and at
most one summand of the form σ·x.

We will need ANF terms in order to axiomatize the left merge operator to be treated
in Section 6.3.2. As we will show in Theorem 6.3.1.14, basic terms and ANF terms are
equivalent in the sense that any basic term can be rewritten into a ANF term, and vice
versa.

Theorem 6.3.1.14 (Equivalence of Basic and ANF Terms)
For every ANF term x of BPA−drt,ε–ID, there exists a basic term x′ such that BPA−drt,ε–ID `
x = x′, and, vice versa, for every basic term x of BPA−drt,ε–ID, there exists an ANF term x′
such that BPA−drt,ε–ID ` x = x′.

Proof The first part is simple. Suppose that x is an ANF-term. We use induction on the
structure of ANF terms, given in Definition 6.3.1.13. Suppose that x ≡ δ, then we take
x′ ≡ δ·ε. Now the property trivially holds for x ≡ ε, x ≡ a·s+ t, x ≡ σ·t, and x ≡ σ·t+ ε,
as by the induction hypothesis the property already holds for the ANF terms s and t.

The second part is harder. Suppose that x is a basic term. Then, by Theorem 6.3.1.11
on page 182, we may assume that x is of the following form:

x ≡
∑
i<m
ai·si +

∑
j<n
σ·uj +

∑

k<p
ε

for m,n,p ∈ N, m + n + p ≥ 1, ai ∈ Aδ, and basic terms si and uj. We now distinguish
six mutually exclusive cases:

(i). There are only ε summands: m = n = 0 and p ≥ 1.

(ii). There are only σ·uj summands: m = 0, n ≥ 1, and p = 0.

(iii). There are both σ·uj and ε summands, but no other summands: m = 0, n ≥ 1, and
p ≥ 1.

(iv). There is exactly one ai·si summand, and no other summands: m = 1 and n = p = 0.

(v). There is exactly one ai·si summand, and at least one other summand: m = 1 and
n+ p ≥ 1.
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(vi). There are at least two ai·si summands: m ≥ 2.

As can be easily seen, this covers all cases. We now prove the property for all six cases,
using induction on the number of symbols in x:

(i). We havem = n = 0 and p ≥ 1. Then:

BPA−drt,ε–ID ` x =
∑

k<p
ε = ε

and ε is an ANF term. Note that the sum over k cannot be empty, as p ≥ 1.

(ii). We havem = 0, n ≥ 1, and p = 0. Then:

BPA−drt,ε–ID ` x =
∑
j<n
σ·uj = σ·


∑
j<n
uj




and this last term is an ANF term, since by the induction hypothesis the property
already holds for

∑
j<n uj. Note that the sum over j cannot be empty, as n ≥ 1.

(iii). We havem = 0, n ≥ 1, and p ≥ 1. Then:

BPA−drt,ε–ID ` x =
∑
j<n
σ·uj +

∑

k<p
ε = σ·


∑
j<n
uj


+ ε

and this last term is an ANF term, since by the induction hypothesis the property
already holds for

∑
j<n uj. Note that neither the sum over j nor the one over k can

be empty, as n ≥ 1 and p ≥ 1.

(iv). We havem = 1 and n = p = 0. Then:

BPA−drt,ε–ID ` x = a0·s0 = a0·s0 + δ
and a0·s0+δ is an ANF term since by the induction hypothesis the property already
holds for s0.

(v). We havem = 1 and n+ p ≥ 1. Then:

BPA−drt,ε–ID ` x = a0·s0 +

∑

j<n
σ·uj +

∑

k<p
ε




and this last term is an ANF term, since by the induction hypothesis the property
already holds for s0 and the second summand. Note that the second summand can-
not be empty, as n+ p ≥ 1.

(vi). We havem ≥ 2. Then:

BPA−drt,ε–ID ` x =
∑
i<m
ai·si +

∑
j<n
σ·uj +

∑

k<p
ε =

a0·s0 +

 ∑

1≤i<m
ai·si +

∑
j<n
σ·uj +

∑

k<p
ε




and this last term is an ANF term, since by the induction hypothesis the property
already holds for s0 and the second summand. Note that the second summand can-
not be empty, asm ≥ 2.
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�

Corollary 6.3.1.15 (Structural Induction over ANF)
Any proposition of the form “For all basic terms . . . ”, that we would normally prove by
structural induction over the definition of basic terms, may now also be proven by induc-
tion over the definition of ANF terms.

Proof This follows directly from Theorem 6.3.1.14 on page 184. �

Theorem 6.3.1.16 (Elimination for BPA−drt,ε–ID)
Let t be a closed BPA−drt,ε–ID term. Then there is a basic term s such that BPA−drt,ε–ID ` s = t.

Proof Use the lexicographical path ordering method described in Proof Outline 4.2.1.1
on page 68. We give no details. �

Theorem 6.3.1.17 (Soundness of BPA−drt,ε–ID)
The set of closed BPA−drt,ε–ID terms modulo bisimulation equivalence is a model of the ax-
ioms of BPA−drt,ε–ID.

Proof Use the direct method described in Proof Outline 4.2.2.1 on page 69. We give no
details. �

Lemma 6.3.1.18 (Towards Completeness of BPA−drt,ε–ID)
Let x be a closed BPA−drt,ε–ID term and let a ∈ A. Then we have:

(i). T(BPA−drt,ε–ID) î x a→ y =⇒ BPA−drt,ε–ID ` x = a·y+ x,
(ii). T(BPA−drt,ε–ID) î x↓=⇒ BPA−drt,ε–ID ` x = ε+ x,

(iii). T(BPA−drt,ε–ID) î x σ3 =⇒ BPA−drt,ε–ID ` x = ν(x),
(iv). T(BPA−drt,ε–ID) î x σ→ y =⇒ BPA−drt,ε–ID ` x = σ·y + x,
(v). T(BPA−drt,ε–ID) î x a→ y =⇒ n(x) > n(y),
(vi). T(BPA−drt,ε–ID) î x σ→ y =⇒ n(x) > n(y).

Proof In the same way as the proof of Lemma 4.3.2.5 on page 82. We give no details.
�

Theorem 6.3.1.19 (Completeness of BPA−drt,ε–ID)
The axiom system BPA−drt,ε–ID is a complete axiomatization of the set of closed BPA−drt,ε–ID
terms modulo bisimulation equivalence.

Proof We use the direct method described in Proof Outline 4.2.3.1 on page 70. Suppose
x+ y ∼BPA−drt,ε–ID y. We then prove that BPA−drt,ε–ID ` x+ y = y.

(i). x ≡ ε. From the deduction rules we have T(BPA−drt,ε–ID) î x↓, and T(BPA−drt,ε–ID) î
(x+ y)↓. Since x+ y ∼BPA−drt,ε–ID y, we then also have T(BPA−drt,ε–ID) î y↓. Then, using
Lemma 6.3.1.18(ii), we have BPA−drt,ε–ID ` x+ y = ε+ y = y.



6.3 • Process Algebras with Undelayable Actions 187

(ii). x ≡ δ·t, where t is a basic term. Then we have BPA−drt,ε–ID ` x+y = δ·t+y = δ+y = y.

(iii). x ≡ a·t, where a ∈ A and t is a basic term. From the deduction rules we obtain
T(BPA−drt,ε–ID) î x a→ t and T(BPA−drt,ε–ID) î x + y a→ t. Since x + y ∼BPA−drt,ε–ID y, we
then also have T(BPA−drt,ε–ID) î y a→ s for some s such that t ∼BPA−drt,ε–ID s. By the in-
duction hypothesis we have BPA−drt,ε–ID ` s = t. From Lemma 6.3.1.18(i) we have
BPA−drt,ε–ID ` y = a·s+ y. So, BPA−drt,ε–ID ` x+ y = a·t+ y = a·s+ y = y.

(iv). x ≡ s + t, where s and t are basic terms. Since x + y ∼BPA−drt,ε–ID y, we also have
s + y ∼BPA−drt,ε–ID y and t + y ∼BPA−drt,ε–ID y. By the induction hypothesis we then have
BPA−drt,ε–ID ` s+ y = y, t + y = y. So, BPA−drt,ε–ID ` x+ y = s+ t + y = s+ y = y.

(v). x ≡ σ · t, where t is a basic term. From the deduction rules we now have that
T(BPA−drt,ε–ID) î x σ→ t and since x + y ∼BPA−drt,ε–ID y we also have T(BPA−drt,ε–ID) î
y σ→ s, x+y σ→ t+s for some s such that t+s ∼BPA−drt–ID s. By Lemma 6.3.1.18(iv) we have
BPA−drt–ID ` y = σ·s+y. By the induction hypothesis we have BPA−drt–ID ` t+ s = s.
So, BPA−drt–ID ` x+ y = σ·t+ y = σ·t+σ·s+ y = σ·(t+ s)+ y = σ·s+ y = y.

�

6.3.2 PA−drt,ε–ID

In this section, we extend the process algebra BPA−drt,ε–ID to the process algebra PA−drt,ε–ID
by introducing axioms for the free merge. The axioms will be in the style of PA−drt–ID′, as
the ν/σ-style of PA−drt–ID appears to be unsuitable in a context with the empty process.

Definition 6.3.2.1 (Signature of PA−drt,ε–ID)
The signature of PA−drt,ε–ID consists of the undelayable actions {a|a ∈ A}, the undelayable
deadlock constant δ, the time-unit delay constant σ, the undelayable empty process con-
stant ε, the alternative composition operator +, the sequential composition operator ·, the
“now” operator νrel, the free merge operator ‖, and the left merge operator ‖ .

Definition 6.3.2.2 (Axioms of PA−drt,ε–ID)
The process algebra PA−drt,ε–ID is axiomatized by the axioms of BPA−drt,ε–ID given in Defini-
tion 6.3.1.3 on page 179, and Axioms DRTEM1–DRTEM12 shown in Table 6.3 on the next
page: PA−drt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DRTEM1–DRTEM12.

☞ Axioms DRTEM1–DRTEM3 are identical to Axioms DRTM1, DRTM3, and DRTM4 of
PA−drt–ID, so we will not elaborate on them.

Axioms DRTEM4–DRTEM7 ensure that x ‖ y has a summand ε iff x and y both have
a summand ε. Note that PA−drt,ε–ID ` ε ‖ x = δ iff PA−drt,ε–ID ø x = ε (we will prove this in
Proposition 6.3.2.15 on page 193).

Axioms DRTEM8–DRTEM12 define the interaction between the undelayable empty
process and the left merge. They work by first eliminating all summands a·y on the right-
hand side of the left merge (Axiom DRTEM8), and then distinguishing between terms
that only have a σ ·y summand left (Axiom DRTEM11), only a ε summand left (Axiom
DRTEM10), both (Axiom DRTEM12), or none (Axiom DRTEM9). Notice that this is exactly
the structure of ANF terms given in Definition 6.3.1.13 on page 184.
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x ‖ y = x ‖ y + y ‖ x DRTEM1

a·x ‖ y = a·(x ‖ y) DRTEM2

(x+ y) ‖ z = x ‖ z+ y ‖ z DRTEM3

ε ‖ ε = ε DRTEM4

ε ‖ a·x = δ DRTEM5

ε ‖ σ·x = δ DRTEM6

ε ‖ (x+ y) = ε ‖ x+ ε ‖ y DRTEM7

σ·x ‖ (a·y+ z) = σ·x ‖ z DRTEM8

σ·x ‖ δ = δ DRTEM9

σ·x ‖ ε = σ·x DRTEM10

σ·x ‖ σ·y = σ·(x ‖ y) DRTEM11

σ·x ‖ (σ·y+ ε) = σ·(x ‖ y) DRTEM12

Table 6.3: Additional axioms for PA−drt,ε–ID.

Remark 6.3.2.3 (Axioms of PA−drt,ε–ID, Part I)
Note that, unlike in a setting without empty process, we do not need an axiom a ‖ x =
a ·x, as that equality is derivable for all closed terms x (we will prove this in Proposi-
tion 6.3.2.14 on page 192). For example:

a ‖ b = a·ε ‖ b = a·(ε ‖ b) = a·(ε ‖ b+ b ‖ ε) = a·(δ+ b·ε ‖ ε)
= a·b·(ε ‖ ε) = a·b·(ε ‖ ε+ ε ‖ ε) = a·b·(ε ‖ ε) = a·b·ε
= a·b

Remark 6.3.2.4 (Axioms of PA−drt,ε–ID, Part II)
The axiomatization as given in Definition 6.3.2.2 on the page before has some conse-
quences that may not be obvious at first sight. For example, consider what we get if we
eliminate the merge operator from the expression (a+ ε) ‖ b using the axioms:

(a+ ε) ‖ b = (a+ ε) ‖ b+ b ‖ (a+ ε)
= a ‖ b+ ε ‖ b+ b·(a+ ε)
= a·b+ δ+ b·(a+ ε)
= a·b+ b·(a+ ε)

So, if we execute a b first, then an a can always still follow. This may seem counter-
intuitive; apparently it is not possible for the ε to the left of the merge to execute before
the b does, in which case a would not be enabled after the execution of the b.

The rationale behind this, is that the ε is not something that “executes”; it merely rep-
resents an option to terminate. Hence, the option remains open until the process actually
does terminate or performs an action. It does not “just get lost”. So for example the pro-
cess a+ ε cannot drop the ε to turn itself into the process a. If it wants to lose the ε, it
has to execute an a.
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In the context of a (multiple) merge, this means that an ε summand in one of the
merge components does not manifest itself as long as the other components of the merge
still have to execute one or more actions before they can terminate or move on to the
following time-slice.

One could be tempted to “repair” this behavior, for example by dropping Axioms
DRTEM4–DRTEM7, and adding an axiom like ε ‖ x = x (i.e., treating ε like it was an
ordinary action). Although this does give us the “desired” equality (a + ε) ‖ b =
(a + ε)·b + b·(a + ε), it backfires immediately, as it destroys the associativity of the
merge. This can be easily checked by expanding ((a+ε) ‖ b) ‖ c and (a+ε) ‖ (b ‖ c); it
turns out that the second process has a summand c·b, while the first process does not.
This is of course unacceptable, as we already stated in our design goals. Any attempt
at such “repairs” appears to have this consequence, unless one is willing to sacrifice the
right-distributivity of the·over the + (Axiom A4), which, again, would violate our design
goals.

For other discussions of the above dilemma, see BAETEN AND VAN GLABBEEK [31] and
VRANCKEN [197].

Remark 6.3.2.5 (Axioms of PA−drt,ε–ID, Part III)
The behavior of ε with respect to the merge manifests itself even more unexpectedly
when time comes into play. For example, consider the expression (σ ·a + ε) ‖ σ ·b.
Applying the axioms we get:

(σ·a+ ε) ‖ σ·b = (σ·a+ ε) ‖ σ·b+σ·b ‖ (σ·a+ ε)
= σ·a ‖ σ·b+ ε ‖ σ·b+σ·b ‖ (σ·a+ ε)
= σ·a ‖ σ·b+ δ+σ·b ‖ σ·a
= σ·a ‖ σ·b

So, the ε-summand on the left side of the merge is immaterial! How should we interpret
this?

Again, by viewing ε as the option to terminate (in the first time-slice, in this case), we
can see that this option can never be exercised. That is to say, because the right compo-
nent of the merge cannot terminate in the first time-slice, the option to terminate of the
left component remains open till we enter the second time-slice. But as we leave the first
time-slice, the ε disappears, as it only presents an option to terminate in that time-slice.
Hence, it vanishes into thin air.

As we have argued before, attempting to “repair” this behavior by treating ε as an
action, means we lose the associativity of the merge. Alternatively, we could replace Ax-
ioms DRTEM12 with the following:

σ·x ‖ (σ·y + ε) = σ·x ‖ σ·y +σ·x ‖ ε

Then the ε does not vanish, but leads to an extra summand σ·b in the above example.
This alternative, however, violates the time-determinism principle: σ·a ‖ (σ·b+ ε) can
do a time step to a ‖ b, while σ·a ‖ σ·b+σ·b can do a time step to a ‖ b+b. As stated
in our design goals, this is not acceptable. Again, we are stuck.
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Now look at the following example. Applying our axioms, we have:

(a+ ε) ‖ σ·b = (a+ ε) ‖ σ·b+σ·b ‖ (a+ ε)
= a ‖ σ·b+ ε ‖ σ·b+σ·b ‖ (a+ ε)
= a·σ·b+ δ+σ·b ‖ ε
= a·σ·b+σ·b
= (a+ ε)·σ·b

Here, the ε-summand on the left side of the merge does materialize. This is due to the
fact that a+ε cannot move on to the second time-slice, while σ·b can. So, a+ε is forced
to terminate before σ·b can move on, and the ε does not vanish.

If, for the sake of orthogonality, we would want the ε-summand to disappear in this
case also, we could for example replace Axioms DRTEM10 by σ·x ‖ ε = δ. That however,
would lead to σ ‖ ε = δ, destroying the unit property of ε with respect to the ‖. Further-
more, this leads to σ ‖ a = a·δ, in itself enough reason to dismiss this alternative. If we
attempt to save what can be saved, for example by putting ε ‖ x = x, we again lose the
associativity of the merge.

Concluding: when x can terminate, and y can do a time step, then the termination op-
tion of x materializes in x ‖ y if and only if x cannot do a time step. This may seem, and
probably is, counter intuitive. However, a simpler way is not conceivable. If the termi-
nation option would always materialize, we either lose the associativity of the merge or
time determinism. If it would never materialize, we lose the unit property with respect
to the merge and the associativity of the merge. So, both simple ways are too simple, and
lead to violations of our design goals.

Remark 6.3.2.6 (Axioms of PA−drt,ε–ID, Part IV)
In the case where one of the n components in a multiple merge has only the option to ter-
minate (so the component has no enabled actions or time steps), while the other compo-
nents do not all have that option, the ε again vanishes, collapsing the merge to n−1 com-
ponents. So for example, ε ‖ σ·a ‖ σ·b = σ·a ‖ σ·b. Or, more generally, ε ‖ x = x ‖ ε = x
for any closed process term x: with respect to closed terms, ε is also a proper unit ele-
ment for the merge. We will prove this in Proposition 6.3.2.14 on page 192.

Definition 6.3.2.7 (Semantics of PA−drt,ε–ID)
The semantics of PA−drt,ε–ID are given by the term-deduction system T(PA−drt,ε–ID), in-
duced by the deduction rules for BPA−drt,ε–ID given in Definition 6.3.1.4 on page 180, and
the additional deduction rules for PA−drt,ε–ID shown in Table 6.4 on the facing page.

☞ The deduction rules for the parallel composition with respect to time transitions,
shown in Table 6.4 on the next page, suffer from the same complications we saw in the
deduction rules for the sequential composition with respect to time transitions. We give
two examples to clarify them.

First, as we have ε ‖ σ·a = σ·a, we should have ε ‖ σ·a σ→ a. Likewise, as (σ·a+ε) ‖
σ·b = σ·(a ‖ b), we should have (σ·a+ ε) ‖ σ·b σ→ a ‖ b, and not (σ·a+ ε) ‖ σ·b σ→ b.

Theorem 6.3.2.8 (Time Determinism for PA−drt,ε–ID)
Let x, y, and y′ be closed PA−drt,ε–ID terms. Then we have:

T(PA−drt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′
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x a→ x′
x ‖ y a→ x′ ‖ y

y a→ y′
x ‖ y a→ x ‖ y′

x a→ x′
x ‖ y a→ x′ ‖ y

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

x σ3 , x↓, y σ→ y′
x ‖ y σ→ y′

x σ→ x′, y σ
3 , y↓

x ‖ y σ→ x′
x σ→ x′, y σ

3 , y↓
x ‖ y σ→ x′

x↓, y↓
(x ‖ y)↓

x↓, y↓
(x ‖ y)↓

Table 6.4: Additional deduction rules for PA−drt,ε–ID.

Proof We proceed in the manner outlined in Theorem 6.3.1.5 on page 181. As the only
new deduction rules are for the free merge and the left merge, we do not repeat the cases
(i)–(vi) already listed in Theorem 6.3.1.5 on page 181.

(vii). x ≡ s ‖ t for closed PA−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(PA−drt,ε–ID) î s σ→ s′, t σ→ t′ (where, by the induction hypothesis, s′ and t′ are
unique). Then y ≡ y′ ≡ s′ ‖ t′.

(b) T(PA−drt,ε–ID) î s σ3 , s↓, t σ→ t′ (where t′ is unique). Then y ≡ y′ ≡ t′.
(c) T(PA−drt,ε–ID) î s σ→ s′, t σ3 , t↓ (where s′ is unique). Then y ≡ y′ ≡ s′.
(d) Otherwise. In contradiction with T(PA−drt,ε–ID) î x σ→ y.

(viii). x ≡ s ‖ t for closed PA−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(PA−drt,ε–ID) î s σ→ s′, t σ→ t′ (where s′ and t′ are unique). Then y ≡ y′ ≡ s′ ‖ t′.
(b) T(PA−drt,ε–ID) î s σ→ s′, t σ3 , t↓ (where s′ is unique). Then y ≡ y′ ≡ s′.
(c) Otherwise. In contradiction with T(PA−drt,ε–ID) î x σ→ y.

Having inspected all possible cases, we may now conclude that y ≡ y′. �

Definition 6.3.2.9 (Bisimulation and Bisimulation Model for PA−drt,ε–ID)
Bisimulation for PA−drt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “PA−drt,ε–ID” in Definition 6.3.1.6 on
page 182 and Definition 6.3.1.7 on page 182.
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Definition 6.3.2.10 (Basic Terms of PA−drt,ε–ID)
When we speak of basic terms in the context of PA−drt,ε–ID, we mean (σ,δ, ε)-basic terms
as defined in Definition 6.3.1.8 on page 182.

Theorem 6.3.2.11 (Elimination for PA−drt,ε–ID)
Let t be a closed PA−drt,ε–ID term. Then there is a basic term s such that PA−drt,ε–ID ` s = t.

Proof Use the direct method described in Proof Outline 4.2.1.2 on page 68. We give no
details. �

Theorem 6.3.2.12 (Soundness of PA−drt,ε–ID)
The set of closed PA−drt,ε–ID terms modulo bisimulation equivalence is a model of the axioms
of PA−drt,ε–ID.

Proof Use the direct method described in Proof Outline 4.2.2.1 on page 69. We give no
details. �

Theorem 6.3.2.13 (Completeness of PA−drt,ε–ID)
The axiom system PA−drt,ε–ID is a complete axiomatization of the set of closed PA−drt,ε–ID
terms modulo bisimulation equivalence.

Proof Use Verhoef’s method described in Proof Outline 4.2.3.4 on page 71. We give no
details. �

Proposition 6.3.2.14 (Properties of PA−drt,ε–ID, Part I)
Let x be a basic term and a ∈ Aδ. Then the following properties hold:

(i). PA−drt,ε–ID ` x ‖ ε = x
(ii). PA−drt,ε–ID ` ε ‖ x = x
(iii). PA−drt,ε–ID ` a ‖ x = a·x
(iv). PA−drt,ε–ID ` δ ‖ x = δ
(v). PA−drt,ε–ID ` x ‖ ε = x

Proof

(i). We prove this by induction on the structure of basic terms (Definition 6.3.2.10).

(a) x ≡ ε. Then PA−drt,ε–ID ` x ‖ ε = ε ‖ ε = ε ‖ ε+ ε ‖ ε = ε+ ε = ε = x.
(b) x ≡ a·t for some a ∈ Aδ and basic term t. Then PA−drt,ε–ID ` x ‖ ε = a·t ‖ ε =
a·t ‖ ε+ ε ‖ a·t = a·(t ‖ ε)+ δ = a·t+ δ = a·t = x.

(c) x ≡ s + t for some basic terms s and t. Then PA−drt,ε–ID ` x ‖ ε = (s+ t) ‖ ε =
(s+t) ‖ ε+ε ‖ (s+t) = s ‖ ε+t ‖ ε+ε ‖ s+ε ‖ t = s ‖ ε+ε ‖ s+t ‖ ε+ε ‖ t =
s ‖ ε+ t ‖ ε = s+ t = x.

(d) x ≡ σ·t for some basic term t. Then PA−drt,ε–ID ` x ‖ ε = σ·t ‖ ε = σ·t ‖ ε +
ε ‖ σ·t = σ·t+ δ = σ·t = x.

(ii). Using (i), we have PA−drt,ε–ID ` ε ‖ x = ε ‖ x+ x ‖ ε = x ‖ ε+ ε ‖ x = x ‖ ε = x.
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(iii). Using (ii), we have PA−drt,ε–ID ` a ‖ x = a·ε ‖ x = a·(ε ‖ x) = a·x.
(iv). Using (iii), we have PA−drt,ε–ID ` δ ‖ x = δ·x = δ.

(v). We again prove this by induction on the structure of basic terms.

(a) x ≡ ε. Then PA−drt,ε–ID ` x ‖ ε = ε ‖ ε = ε = x.
(b) x ≡ a·t for some a ∈ Aδ and basic term t. Then PA−drt,ε–ID ` x ‖ ε = a·t ‖ ε =
a·(t ‖ ε) = a·t = x.

(c) x ≡ s + t for some basic terms s and t. Then PA−drt,ε–ID ` (s+ t) ‖ ε = s ‖ ε +
t ‖ ε = s+ t = x.

(d) x ≡ σ·t for some basic term t. Then PA−drt,ε–ID ` x = σ·t ‖ ε = σ·t = x.

�

Proposition 6.3.2.15 (Properties of PA−drt,ε–ID, Part II)
Let x, y, z be closed PA−drt,ε–ID terms. Then the following properties hold:

(i). PA−drt,ε–ID ` ε ‖ x =
{
ε if x↓
δ if x↓ô

(ii). PA−drt,ε–ID ` σ·x ‖ νrel(y) =
{
σ·x if y↓
δ if y↓ô

(iii). PA−drt,ε–ID ` σ·x ‖ (νrel(y)+σ·z) = σ(x ‖ z)
(iv). PA−drt,ε–ID ` νrel(x) ‖ y = νrel(νrel(x) ‖ y).
(v). PA−drt,ε–ID ` νrel(x) ‖ νrel(y) = νrel(νrel(x) ‖ νrel(y)).

Proof By Theorem 6.3.2.11 on the preceding page, we may assume that x, y and z are
basic terms.

(i). We use induction on the structure of basic term x.

(a) x ≡ ε. Then x↓, and we have PA−drt,ε–ID ` ε ‖ x = ε ‖ ε = ε.
(b) x ≡ a·t for some a ∈ Aδ and basic term t. Then x↓ô, and we have PA−drt,ε–ID `
ε ‖ x = ε ‖ a·t = δ.

(c) x ≡ s + t for some basic terms s and t. First, suppose that x↓ô. Then, s↓ô and t↓ô.
So, by the induction hypothesis, PA−drt,ε–ID ` ε ‖ x = ε ‖ (s+t) = ε ‖ s+ε ‖ t =
δ + δ = δ. Secondly, suppose that x↓. Then, s↓, or t↓, or both. Assume that
s↓ and t↓ô. Then, by the induction hypothesis PA−drt,ε–ID ` ε ‖ x = ε ‖ (s+ t) =
ε ‖ s + ε ‖ t = ε + δ = ε. The cases s↓ô, t↓ and s↓, t↓ are handled in the same
way.

(d) x ≡ σ · t for some basic term t. Then x↓ô, and we have PA−drt,ε–ID ` ε ‖ x =
ε ‖ σ·t = δ.

(ii). As y is a basic term, by Corollary 6.3.1.15, we may use induction on the structure
of ANF terms
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(a) y ≡ δ. Then y↓ô, and we have PA−drt,ε–ID ` σ ·x ‖ ν(y) = σ ·x ‖ ν(δ) = σ ·
x ‖ ν(δ·ε) = σ·x ‖ δ·ε = σ·x ‖ δ = δ.

(b) y ≡ ε. Then y↓, and we have PA−drt,ε–ID ` σ·x ‖ ν(y) = σ·x ‖ ν(ε) = σ·x ‖ ε =
σ·x.

(c) y ≡ a·s + t for some a ∈ Aδ and basic terms s and t. Then PA−drt,ε–ID ` σ ·
x ‖ ν(y) = σ·x ‖ ν(a·s+ t) = σ·x ‖ (ν(a·s)+ν(t)) = σ·x ‖ (a·s+ν(t)) = σ·
x ‖ ν(t). Now, using the induction hypothesis, we get PA−drt,ε–ID ` σ·x ‖ ν(t) =
σ·x when t↓, hence y↓, and PA−drt,ε–ID ` σ·x ‖ n(t) = δ when t↓ô, hence y↓ô.

(d) y ≡ σ·t for some basic term t. Then y↓ô, and we have PA−drt,ε–ID ` σ·x ‖ ν(y) =
σ·x ‖ ν(σ·t) = σ·x ‖ δ = δ.

(e) y ≡ σ · t + ε for some basic term t. Then y ↓, and we have PA−drt,ε–ID ` σ ·
x ‖ ν(y) = σ ·x ‖ ν(σ ·t + ε) = σ ·x ‖ (ν(σ ·t) + ν(ε)) = σ ·x ‖ (δ + ε) =
σ·x ‖ ε = σ·x.

(iii). As y is a basic term, by Corollary 6.3.1.15, we may use induction on the structure
of ANF terms.

(a) y ≡ δ. Then PA−drt,ε–ID ` σ ·x ‖ (ν(y) + σ ·z) = σ ·x ‖ (ν(δ) + σ ·z) =
σ·x ‖ (δ+σ·z) = σ·x ‖ σ·z = σ·(x ‖ z).

(b) y ≡ ε. Then PA−drt,ε–ID ` σ·x ‖ (ν(y)+σ·z) = σ·x ‖ (ν(ε)+σ·z) = σ·x ‖ (ε+
σ·z) = σ·(x ‖ z).

(c) y ≡ a·s + t for some a ∈ Aδ and basic terms s and t. Then PA−drt,ε–ID ` σ ·
x ‖ (ν(y)+σ·z) = σ·x ‖ (ν(a·s+ t)+σ·z) = σ·x ‖ (ν(a·s)+ν(t)+σ·z) =
σ ·x ‖ (a·s + ν(t) + σ ·z) = σ ·x ‖ (ν(t) + σ ·z). Now, using the induction
hypothesis, PA−drt,ε–ID ` σ·x ‖ (ν(t)+σ·z) = σ·(x ‖ z).

(d) y ≡ σ · t for some basic term t. Then PA−drt,ε–ID ` σ ·x ‖ (ν(y) + σ ·z) =
σ·x ‖ (ν(σ·t)+σ·z) = σ·x ‖ (δ+σ·z) = σ·x ‖ σ·z = σ·(x ‖ z).

(e) y ≡ σ ·t + ε for some basic term t. Then PA−drt,ε–ID ` σ ·x ‖ (ν(y) + σ·z) =
σ·x ‖ (ν(σ·t+ε)+σ·z) = σ·x ‖ (ν(σ·t)+ν(ε)+σ·z) = σ·x ‖ (δ+ε+σ·z) =
σ·x ‖ (ε+σ·z) = σ·(x ‖ z).

(iv). We use induction on the structure of basic term x.

(a) x ≡ ε. Suppose that y↓. Using (i), we then have:

PA−drt,ε–ID ` ν(x) ‖ y = ν(ε) ‖ y = ε ‖ y = ε = ν(ε) = ν(ε ‖ y) =
ν(ν(ε) ‖ y) = ν(ν(x) ‖ y)

The case where y↓ô is handled in the same way.

(b) x ≡ a·t for some a ∈ Aδ and basic term t. We then have:

PA−drt,ε–ID ` ν(x) ‖ y = ν(a·t) ‖ y = a·t ‖ y = a·(t ‖ y) =
ν(a·(t ‖ y)) = ν(a·t ‖ y) = ν(ν(a·t) ‖ y) =
ν(ν(x) ‖ y)
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(c) x ≡ s+t for some basic terms s and t. Using the induction hypothesis, we then
have:

PA−drt,ε–ID ` ν(x) ‖ y = ν(s+ t) ‖ y = (ν(s)+ ν(t)) ‖ y =
ν(s) ‖ y + ν(t) ‖ y = ν(ν(s) ‖ y)+ ν(ν(t) ‖ y) =
ν(ν(s) ‖ y + ν(t) ‖ y) = ν((ν(s)+ ν(t)) ‖ y) =
ν(ν(s+ t) ‖ y) = ν(ν(x) ‖ y)

(d) x ≡ σ·t for some basic term t. Using Proposition 6.3.2.14(iv), we then have:

PA−drt,ε–ID ` ν(x) ‖ y = ν(σ·t) ‖ y = δ ‖ y = δ = δ·ε = ν(δ·ε) =
ν(δ) = ν(δ ‖ y) = ν(ν(σ·t) ‖ y) = ν(ν(x) ‖ y)

(v). Using (iv), we have:

PA−drt,ε–ID ` ν(x) ‖ ν(y) = ν(x) ‖ ν(y)+ ν(y) ‖ ν(x) =
ν(ν(x) ‖ ν(y))+ ν(ν(y) ‖ ν(x)) =
ν(ν(x) ‖ ν(y)+ ν(y) ‖ ν(x)) = ν(ν(x) ‖ ν(y))

�

☞ These properties, especially (ii), make clear why the ν/σ-axiomatization style we used
successfully for PA−drt–ID does not work well for PA−drt,ε–ID: we would need a conditional
axiom to defineσ·x ‖ νrel(y), where the condition would be y↓. Although this is not, as it
may seem, a model dependent condition (it can be rephrased as BPA−drt,ε–ID ` x = x+ ε),
it is still hairy enough for us to reject it.

Theorem 6.3.2.16 (Axioms of Standard Concurrency for PA−drt,ε–ID)
Let x, y, z be closed PA−drt,ε–ID terms. Then the following properties hold:

(i). PA−drt,ε–ID ` x ‖ y = y ‖ x
(ii). PA−drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)
(iii). PA−drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

Proof By Theorem 6.3.2.11 on page 192, we may assume that x, y and z are basic terms.

(i). This follows directly from the axioms: PA−drt,ε–ID ` x ‖ y = x ‖ y + y ‖ x = y ‖ x +
x ‖ y = y ‖ x (note that this holds for open terms also).

(ii). We use induction on the structure of basic term x, combined with simultaneous
induction with (iii):

(a) x ≡ ε. Using Proposition 6.3.2.15(i), we then have:

PA−drt,ε–ID ` (x ‖ y) ‖ z = (ε ‖ y) ‖ z =
{
ε ‖ z if y↓
δ ‖ z if y↓ô =

{
ε if y↓, z↓
δ otherwise

=
{
ε if (y ‖ z)↓
δ if (y ‖ z)↓ô = ε ‖ (y ‖ z) = x ‖ (y ‖ z)
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(b) x ≡ a·t for some a ∈ Aδ and basic term t. Using simultaneous induction with
(iii), and using Proposition 6.3.2.14(iii) we then have:

PA−drt,ε–ID ` (x ‖ y) ‖ z = (a·t ‖ y) ‖ z = a·(t ‖ y) ‖ z =
a·((t ‖ y) ‖ z) = a·(t ‖ (y ‖ z)) = a·t ‖ (y ‖ z) = x ‖ (y ‖ z)

(c) x ≡ s+t for some basic terms s and t. Using the induction hypothesis, we then
have:

PA−drt,ε–ID ` (x ‖ y) ‖ z = ((s+ t) ‖ y) ‖ z = (s ‖ y + t ‖ y) ‖ z =
(s ‖ y) ‖ z+ (t ‖ y) ‖ z = s ‖ (y ‖ z)+ t ‖ (y ‖ z) =
(s+ t) ‖ (y ‖ z) = x ‖ (y ‖ z)

(d) x ≡ σ ·t for some basic term t. We assume, by Lemma 6.3.1.12 on page 183,
that either BPA−drt,ε–ID ` y = ν(y), or that there exists a basic term y′, such
that BPA−drt,ε–ID ` y = ν(y) + σ ·y′ and n(y′) < n(y), and assume mutatis
mutandis the same for z. We now distinguish four cases:

1. BPA−drt,ε–ID ` y = ν(y) and BPA−drt,ε–ID ` z = ν(z). Then we have, using
Proposition 6.3.2.15:

PA−drt,ε–ID ` (x ‖ y) ‖ z = (σ·t ‖ ν(y)) ‖ ν(z) =
{
σ·t ‖ ν(z) if y↓
δ ‖ ν(z) if y↓ô =

{
σ·t ‖ ν(z) if y↓
δ if y↓ô =

{
σ·t if y↓, z↓
δ otherwise

=
{
σ·t if (y ‖ z)↓
δ otherwise

=

σ·t ‖ ν(y ‖ z) = σ·t ‖ ν(ν(y) ‖ ν(z)) =
σ·t ‖ (ν(y) ‖ ν(z)) = x ‖ (y ‖ z)

2. BPA−drt,ε–ID ` y = ν(y) and BPA−drt,ε–ID ` z = ν(z)+σ·z′. Then we have,
using Proposition 6.3.2.15:

PA−drt,ε–ID `
(x ‖ y) ‖ z = (σ·t ‖ ν(y)) ‖ (ν(z)+σ·z′) =
{
σ·t ‖ (ν(z)+σ·z′) if y↓
δ ‖ (ν(z)+σ·z′) if y↓ô =

{
σ·(t ‖ z′) if y↓
δ if y↓ô =

{
σ·t ‖ (ν(s)+σ·z′) if y↓
σ·t ‖ ν(s) if y↓ô =

{
σ·t ‖ (ν(s)+σ·z′) if y↓
σ·t ‖ (ν(s)+ δ) if y↓ô =

σ·t ‖ (ν(s)+σ·z′ ‖ ν(y)) =
σ·t ‖ (ν(ν(y) ‖ z+ ν(z) ‖ y)+σ·z′ ‖ ν(y)) =
σ·t ‖ (ν(ν(y) ‖ z)+ ν(ν(z) ‖ y)+σ·z′ ‖ ν(y)) =
σ·t ‖ (ν(y) ‖ z+ ν(z) ‖ y +σ·z′ ‖ ν(y)) =
σ·t ‖ (ν(y) ‖ (ν(z)+σ·z′)+ (ν(z)+σ·z′) ‖ ν(y)) =
σ·t ‖ (ν(y) ‖ (ν(z)+σ·z′)) =
x ‖ (y ‖ z)
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where we define:

s ≡ ν(y) ‖ z+ ν(z) ‖ y

and use that if y↓ô, then s↓ô.
3. BPA−drt,ε–ID ` y = ν(y)+σ·y′ and BPA−drt,ε–ID ` z = ν(z)+σ·z′. This case

is handled in the same way as the previous case.

4. BPA−drt,ε–ID ` y = ν(y)+σ·y′ and BPA−drt,ε–ID ` z = ν(z)+σ·z′. Then we
have, using Proposition 6.3.2.15, and simultaneous induction with (iii):

PA−drt,ε–ID ` (x ‖ y) ‖ z =
(σ·t ‖ (ν(y)+σ·y′)) ‖ (ν(z)+σ·z′) =
σ·(t ‖ y′) ‖ (ν(z)+σ·z′) =
σ·((t ‖ y′) ‖ z′) =
σ·(t ‖ (y′ ‖ z′)) =
σ·t ‖ (ν(ν(y) ‖ z+ ν(z) ‖ y)+σ·(y′ ‖ z′)) =
σ·t ‖ (ν(ν(y) ‖ z+ ν(z) ‖ y)+σ·(y′ ‖ z′ + z′ ‖ y′)) =

σ·t ‖
(
ν(ν(y) ‖ z)+σ·(y′ ‖ z′)+
ν(ν(z) ‖ y)+σ·(z′ ‖ y′)

)
=

σ·t ‖
(
ν(y) ‖ z+σ·y′ ‖ (ν(z)+σ·z′)+
ν(z) ‖ y +σ·z′ ‖ (ν(y)+σ·y′)

)
=

σ·t ‖
(
(ν(y)+σ·y′) ‖ (ν(z)+σ·z′)+
(ν(z)+σ·z′) ‖ (ν(y)+σ·y′)

)
=

σ·t ‖ ((ν(y)+σ·y′) ‖ (ν(z)+σ·z′)) =
x ‖ (y ‖ z)

(iii). We use simultaneous induction with (ii). Using (i), we then have:

PA−drt,ε–ID ` (x ‖ y) ‖ z =
(x ‖ y) ‖ z+ z ‖ (x ‖ y) =
(x ‖ y + y ‖ x) ‖ z+ z ‖ (x ‖ y) =
(x ‖ y) ‖ z+ (y ‖ x) ‖ z+ z ‖ (y ‖ x) =
x ‖ (y ‖ z)+ y ‖ (x ‖ z)+ (z ‖ y) ‖ x =
x ‖ (y ‖ z)+ y ‖ (z ‖ x)+ (z ‖ y) ‖ x =
x ‖ (y ‖ z)+ (y ‖ z) ‖ x+ (z ‖ y) ‖ x =
x ‖ (y ‖ z)+ (y ‖ z+ z ‖ y) ‖ x =
x ‖ (y ‖ z)+ (y ‖ z) ‖ x =
x ‖ (y ‖ z)

�
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Corollary 6.3.2.17 (Commutativity and Associativity of the Merge)
For closed terms, the free merge operator of PA−drt,ε–ID is commutative and associative.

Proof This follows directly from Theorem 6.3.2.16 on page 195. �

6.3.3 ACP−drt,ε–ID

In this section, we modify the process algebra PA−drt,ε–ID by extending the free merge to
a merge, where the axioms for the communication merge are based on the inductive def-
inition of basic terms. The resulting process algebra is called ACP−drt,ε–ID.

Definition 6.3.3.1 (Signature of ACP−drt,ε–ID)
The signature of ACP−drt,ε–ID consists of the undelayable actions {a|a ∈ A}, the unde-
layable deadlock constant δ, the time-unit delay constant σ, the undelayable empty pro-
cess constant ε, the alternative composition operator +, the sequential composition op-
erator ·, the the “now” operator νrel, merge operator ‖, the left merge operator ‖ , the
communication merge operator | , and the encapsulation operator ∂H.

Definition 6.3.3.2 (Axioms of ACP−drt,ε–ID)
The process algebra ACP−drt,ε–ID is axiomatized by the axioms of PA−drt,ε–ID given in Def-
inition 6.3.2.2 on page 187, minus Axiom DRTEM1, plus Axioms DRTECM1–DRTECM9,
DRTECF, and DRTED1–DRTED5 shown in Table 6.5 on the facing page: ACP−drt,ε–ID = A1–
A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DRTEM2–DRTEM12 + DRTECM1–DRTECM9
+ DRTECF + DRTED1–DRTED6.

☞ Axioms DRTECM1, DRTECM2, DRTECM8, DRTECM9, DRTECF, and DRTED1–DRTED4
all correspond to identical axioms in ACP−drt–ID, so we will not elaborate on them.

Axiom DRTECM3 expresses that the time-unit delay constant distributes over the
communication merge (due to the fact that time steps do not communicate and weak
time factorization). Axioms DRTECM4 and DRTECM5 express that if one side of a com-
munication merge can only do a time step, and the other side cannot do a time step, then
the communication merge collapses to deadlock.

Axioms DRTECM6 and DRTECM7 express that the undelayable empty process does
not communicate: if either side of a communication merge consist of just an undelayable
empty process, the whole communication merge again collapses to deadlock.

Finally, Axioms DRTED5 and DRTED6 express that the time-unit delay constant and
the undelayable empty process are immune to encapsulation.

Definition 6.3.3.3 (Semantics of ACP−drt,ε–ID)
The semantics of ACP−drt,ε–ID are given by the term-deduction system T(ACP−drt,ε–ID), in-
duced by the deduction rules for PA−drt,ε–ID given in Definition 6.3.2.7 on page 190, and
the additional deduction rules for ACP−drt,ε–ID shown in Table 6.6 on page 200.

☞ These deduction rules are entirely straightforward, so we will not discuss them.

Theorem 6.3.3.4 (Time Determinism for ACP−drt,ε–ID)
Let x, y, and y′ be closed ACP−drt,ε–ID terms. Then we have:

T(ACP−drt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′
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x ‖ y = x ‖ y + y ‖ x+ x | y DRTECM1

a·x | b·y = (a | b)·(x ‖ y) DRTECM2

σ·x |σ·y = σ·(x | y) DRTECM3

σ·x | a·y = δ DRTECM4

a·x |σ·y = δ DRTECM5

x | ε = δ DRTECM6

ε | x = δ DRTECM7

(x+ y) | z = x | z+ y | z DRTECM8

x | (y + z) = x | y + x | z DRTECM9

a | b = c if γ(a,b) = c DRTECF

∂H(a) = a if a ∉ H DRTED1

∂H(a) = δ if a ∈ H DRTED2

∂H(x+ y) = ∂H(x)+ ∂H(y) DRTED3

∂H(x·y) = ∂H(x)·∂H(y) DRTED4

∂H(σ) = σ DRTED5

∂H(ε) = ε DRTED6

Table 6.5: Additional axioms for ACP−drt,ε–ID.

Proof We proceed in the manner outlined in Theorem 6.3.1.5 on page 181. As the only
new deduction rules regarding σ-transitions are for the communication merge and the
encapsulation, we do not repeat the cases (i)–(viii) already listed in Theorem 6.3.1.5 on
page 181 and Theorem 6.3.2.8 on page 190.

(ix). x ≡ s | t for closed ACP−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(ACP−drt,ε–ID) î s σ→ s′, t σ→ t′ (where, by the induction hypothesis, s′ and t′
are unique). Then y ≡ y′ ≡ s′ | t′.

(b) Otherwise. In contradiction with T(ACP−drt,ε–ID) î x σ→ y.

(x). x ≡ ∂H(s) for a closed ACP−drt,ε–ID terms s. We proceed by case distinction on the
transitions of s.

(a) T(ACP−drt,ε–ID) î s σ→ s′ (where s′ is unique). Then y ≡ y′ ≡ ∂H(s′).
(b) Otherwise. In contradiction with T(ACP−drt,ε–ID) î x σ→ y.

Having inspected all possible cases, we may now conclude that y ≡ y′. �

Definition 6.3.3.5 (Bisimulation and Bisimulation Model for ACP−drt,ε–ID)
Bisimulation for ACP−drt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “ACP−drt,ε–ID” in Definition 6.3.1.6
on page 182 and Definition 6.3.1.7 on page 182.
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x a→ x′, y b→ y′, γ(a,b) = c
x ‖ y c→ x′ ‖ y′

x a→ x′, y b→ y′, γ(a,b) = c
x | y c→ x′ ‖ y′

x σ→ x′, y σ→ y′
x | y σ→ x′ | y′

x a→ x′, a ∉ H
∂H(x)

a→ ∂H(x′)
x↓

∂H(x)↓
x σ→ x′

∂H(x)
σ→ ∂H(x′)

Table 6.6: Additional deduction rules for ACP−drt,ε–ID.

Definition 6.3.3.6 (Basic Terms of ACP−drt,ε–ID)
When we speak of basic terms in the context of ACP−drt,ε–ID, we mean (σ,δ, ε)-basic terms
as defined in Definition 6.3.1.8 on page 182.

Theorem 6.3.3.7 (Elimination for ACP−drt,ε–ID)
Let t be a closed ACP−drt,ε–ID term. Then there is a basic term s such that BPA−drt,ε–ID ` s = t.

Proof Use the direct method described in Proof Outline 4.2.1.2 on page 68. We give no
details. �

Theorem 6.3.3.8 (Soundness of ACP−drt,ε–ID)
The set of closed ACP−drt,ε–ID terms modulo bisimulation equivalence is a model of the ax-
ioms of ACP−drt,ε–ID.

Proof Use the direct method described in Proof Outline 4.2.2.1 on page 69. We give no
details. �

Theorem 6.3.3.9 (Completeness of ACP−drt,ε–ID)
The axiom system ACP−drt,ε–ID is a complete axiomatization of the set of closed ACP−drt,ε–ID
terms modulo bisimulation equivalence.

Proof Use Verhoef’s method described in Proof Outline 4.2.3.4 on page 71. We give no
details. �

Proposition 6.3.3.10 (Properties of ACP−drt,ε–ID)
Let x be a basic term and a ∈ Aδ. Then the following properties hold:

(i). ACP−drt,ε–ID ` x ‖ ε = x
(ii). ACP−drt,ε–ID ` ε ‖ x = x
(iii). ACP−drt,ε–ID ` a ‖ x = a·x
(iv). ACP−drt,ε–ID ` δ ‖ x = δ
(v). ACP−drt,ε–ID ` x ‖ ε = x

Proof
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(i). We prove this by induction on the structure of basic terms.

(a) x ≡ ε. Then ACP−drt,ε–ID ` x ‖ ε = ε ‖ ε = ε ‖ ε+ ε ‖ ε+ ε | ε = ε+ ε+δ = ε = x.
(b) x ≡ a·t for a ∈ Aδ and a basic term t. Then ACP−drt,ε–ID ` x ‖ ε = a·t ‖ ε =
a·t ‖ ε+ ε ‖ a·t+ a·t | ε = a·(t ‖ ε)+ δ+ δ = a·t+ δ+ δ = a·t = x.

(c) x ≡ s + t for basic terms s and t. Then ACP−drt,ε–ID ` x ‖ ε = (s + t) ‖ ε =
(s+ t) ‖ ε+ ε ‖ (s+ t)+ (s+ t) | ε = s ‖ ε+ t ‖ ε+ ε ‖ s+ ε ‖ t+ s | ε+ t | ε =
s ‖ ε+ ε ‖ s+ s | ε+ t ‖ ε+ ε ‖ t + t | ε = s ‖ ε+ t ‖ ε = s+ t = x.

(d) x ≡ σ·t for a basic term t. Then ACP−drt,ε–ID ` x ‖ ε = σ·t ‖ ε = σ·t ‖ ε+ε ‖ σ·
t +σ·t | ε = σ·t+ δ+ δ = σ·t = x.

(ii). Using (i), we have ACP−drt,ε–ID ` ε ‖ x = ε ‖ x + x ‖ ε + ε | x = ε ‖ x + x ‖ ε + δ =
x ‖ ε+ ε ‖ x+ x | ε = x ‖ ε = x.

(iii). Using (ii), we have ACP−drt,ε–ID ` a ‖ x = a·ε ‖ x = a·(ε ‖ x) = a·x.
(iv). Using (iii), we have ACP−drt,ε–ID ` δ ‖ x = δ·x = δ.

(v). We again prove this by induction on the structure of basic terms.

(a) x ≡ ε. Then ACP−drt,ε–ID ` x ‖ ε = ε ‖ ε = ε = x.
(b) x ≡ a·t for a ∈ Aδ and a basic term t. Then ACP−drt,ε–ID ` x ‖ ε = a·t ‖ ε =
a·(t ‖ ε) = a·t = x.

(c) x ≡ s+ t for basic terms s and t. Then ACP−drt,ε–ID ` (s+ t) ‖ ε = s ‖ ε+ t ‖ ε =
s+ t = x.

(d) x ≡ σ·t for a basic term t. Then ACP−drt,ε–ID ` x = σ·t ‖ ε = σ·t = x.

�

Theorem 6.3.3.11 (Axioms of Standard Concurrency for ACP−drt,ε–ID)
Let x, y, z be closed ACP−drt,ε–ID terms. Then the following properties hold:

(i). ACP−drt,ε–ID ` x | y = y | x
(ii). ACP−drt,ε–ID ` x ‖ y = y ‖ x
(iii). ACP−drt,ε–ID ` (x | y) | z = x | (y | z)
(iv). ACP−drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)
(v). ACP−drt,ε–ID ` x | (y ‖ z) = (x | y) ‖ z
(vi). ACP−drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

Proof By Theorem 6.3.3.7 assume that x, y, and z are basic terms. Prove (i) by structural
induction on both x and y. Then, using (i), we have that ACP−drt,ε–ID ` x ‖ y = x ‖ y +
y ‖ x+x|y = y ‖ x+x ‖ y+y|x = y ‖ x, which proves (ii). Items (iii)–(vi) are finally proven
together, using simultaneous induction in the manner of the proof of item (ii) and (iii) of
Theorem 6.3.2.16 on page 195. We give no details. �
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Corollary 6.3.3.12 (Commutativity and Associativity of the Merge)
For closed terms, the merge and communication merge operators of ACP−drt,ε–ID are com-
mutative and associative.

Proof This follows directly from Theorem 6.3.3.11 on the page before. �

6.3.4 Immediate Deadlock versus the Empty Process

In this section, we make a small detour into (the absence of) the process algebra BPA−drt,ε.
This process algebra should be like BPA−drt,ε–ID with immediate deadlock added. As we
will argue, the addition of the immediate deadlock to BPA−drt,ε–ID is not very well conceiv-
able, i.e., appears to lead inescapably to inconsistencies.

Let us naively try to introduce the immediate deadlock like we did for BPA−drt. We then
get the axioms shown in Table 6.7.

σ·δ̇ = δ DRTESID

x+ δ̇ = x A6ID

δ̇·x = δ̇ A7ID

Table 6.7: Axioms for immediate deadlock with empty process

Here Axioms A6ID and A7ID express the deadlock property of the immediate dead-
lock, and Axiom DRTESID expresses the fact that the immediate deadlock prohibits the
further passage of time: stopping time at the beginning of the next time-slice (the pro-
cess σ·δ̇) is the same as stopping time at the end of the current time-slice (the process
δ).

The introduction of Axiom A6ID now makes it necessary to drop Axiom A6: as δ̇ now
plays the role of the zero element for the choice, the equality x + δ = x does not hold
anymore for x = δ̇, as we have δ+ δ̇ = δ by Axiom A6ID. To compensate for this, we will
have to introduce axioms to the effect that x+δ = x for x ≠ δ̇. So, for example, we could
introduce the axioms shown in Table 6.8.

a+ δ = a DRTE5

σ + δ = σ DRTE6

ε+ δ = ε DRTE7

Table 6.8: Weakened axioms for undelayable deadlock with empty
process

Unfortunately, this leads already to an inconsistency, as we now have:

δ̇ = ε·δ̇ = (ε+ δ)·δ̇ = ε·δ̇+ δ·δ̇ = δ̇+ δ = δ
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Hence, δ̇ = δ, and the whole exercise is in vain.
What to do? We have several options. We could for example weaken Axioms DRTE3

and DRTE4 so that x is not allowed to be δ̇ anymore. This could be achieved by weakening
Axioms DRTE3 and DRTE4 to Axioms DRTE3ID and DRTE4ID from Table 6.9.

(x+ δ)·ε = x+ δ DRTE3ID

ε·(x+ δ) = x+ δ DRTE4ID

Table 6.9: Weakened axioms for empty process and sequential
composition.

However, this does not get us far, as we now have to decide what the process ε · δ̇
should be. As shown above, we cannot let it be δ̇, as that leads to δ = δ̇. Then, the next
logical candidate is δ. However, putting ε· δ̇ = δ leads to another inconsistency, as we
then have:

a·δ̇ = (a·ε)·δ̇ = a·(ε·δ̇) = a·δ

So, a·δ̇ = a·δ, and that is not what we want either.
Our last resort now is to introduce, next to δ̇, a brand new constant ε̇, the immediate

empty process, that intuitively denotes something like an “immediate successful termi-
nation option”. The idea is that ε̇ can terminate (like ε), but cannot idle (like δ̇). This
ε̇ would then be a true unit element for the sequential composition. However, the role
of the undelayable actions would be seriously changed, as we now need to consider the
idling behavior within a time-slice. So, for example, the process a now differs from the
process a·ε, as the second can still idle after it has executed an a, while the first cannot.
If we fail to make this distinction, we run into the same problems as before. As a result,
we have to construct quite different term-deduction rules, leading to a different model.
Since one of our design goals was to build on existing discrete-time process algebras, and
not invent totally different ones, we will not further explore the ε̇ option sketched here.
(Note that the above considerations are not specifically bound to discrete-time process
algebra; the incompatibility also arises in untimed process algebra. The reason that we
treat this problem in this chapter, and not in Chapter 2, is that we felt that due to the
technical nature of the problem, it would not fit in with the introductory character of
that chapter.)

Taking into account the above, we conclude that in the current framework ε and δ̇ do
not combine in any useful way, and we will not consider δ̇ any further in this chapter.

This is very unfortunate, as δ̇ could potentially be quite useful. Consider for exam-
ple Lemma 6.3.1.12 on page 183. If we would have a consistent way to define a process
algebra BPA−drt,ε, for all terms t there would be a term s such that t + δ = ν(t)+σ·s (in
those cases where t = ν(t), we would take s ≡ δ̇, as then ν(t)+σ·δ̇ = ν(t)+δ = t+δ).
So, Lemma 6.3.1.12 would only have one case instead of two, and as a result the proof
on page 196 would only need to examine one case under item (i)(d), instead of four as it
does now.



204 6 • Adding the Empty Process

In this way, the presence of δ̇ would enable us to collapse quite a few of the case
distinctions with which our proofs are ridden. Strangely enough, in the conclusion of
Chapter 5 we argued (on equally valid grounds), that indeed the presence of ε would col-
lapse a lot of the case distinctions made there. It seems very ironical you cannot have
them both.

6.4 Process Algebras with Delayable Actions

Now, we extend the process algebras of Section 6.3 with delayable actions. We define the
process algebra BPAdrt,ε–ID, and step-by-step extend it with the the free merge and the
merge. For each extension we give an axiomatization, an operational semantics, and a
description of all concepts that are introduced. Furthermore, we give the considerations
that have led us to construct these algebras in the way we have done.

6.4.1 BPAdrt,ε–ID

In this section, we define the process algebra BPAdrt,ε–ID, which is basically the process
algebra BPA−drt,ε–ID extended with delayable actions (note the absence of the superscript
“−”).

Definition 6.4.1.1 (Signature of BPAdrt,ε–ID)
The signature of BPAdrt,ε–ID consists of the undelayable actions {a|a ∈ A}, the delayable
actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable deadlock constant
δ, the time-unit delay constant σ, the undelayable empty process constant ε, the delayable
empty process constant ε, the alternative composition operator +, the sequential compo-
sition operator ·, and the “now” operator νrel.

Remark 6.4.1.2 (The Delayable Empty Process)
The delayable empty process ε in the signature of BPAdrt,ε–ID is the delayable counterpart
of ε: it can terminate successfully in the current time-slice, but it can also move on to a
following time-slice.

Definition 6.4.1.3 (Axioms of BPAdrt,ε–ID)
The process algebra BPAdrt,ε–ID is axiomatized by the axioms of BPA−drt,ε–ID given in Def-
inition 6.3.1.3 on page 179, and Axioms DEP and DA shown in Table 6.10: BPAdrt,ε–ID =
A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DEP + DA.

ε = ε+σ·ε DEP

a = ε·a DA

Table 6.10: Additional axioms for BPAdrt,ε–ID.

☞ Axiom DEP defines the ε: the choice between terminating now, or moving on to the
next time-slice. Axiom DA then uses ε to define the delayable actions: a delayable action
corresponds to moving to some time-slice, followed by the execution of an a.
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Definition 6.4.1.4 (Recursion Principle for ε)
Besides the axioms mentioned in Definition 6.4.1.3, the system BPA+drt,ε–ID also contains
the recursion principle RSP(DEP) shown in Table 6.11.

y = x+σ·y =⇒ y = ε·x RSP(DEP)

Table 6.11: Recursive specification principle for delayable empty process.

☞ Compare RSP(DEP) with RSP(USD) from Table 3.11 on page 56. Intuitively, we have
the equality bxcω= ε·νrel(x).

Remark 6.4.1.5 (The Recursion Principle RSP(DEP))
The recursion principle RSP(DEP) will be used to derive equalities between terms that con-
tain delayable actions. As it turns out, RSP(DEP) is very powerful: for every new operator
we add to BPA+drt,ε–ID, we only have to add axioms to eliminate this operator from terms
that contain only undelayable actions. The elimination of the new operator from terms
that also contain delayable actions is then possible using RSP(DEP).

The price to be paid for this power, is the fact that RSP(DEP) is formulated as a condi-
tional axiom. Hence, we lose the strict equationality of our process algebra. If so desired,
it is possible to maintain strict equationality, but that requires the addition of new ax-
ioms to deal with delayable actions for every new operator added. For a description and
examples on how to do this in a structured manner, see Section 5.5.

In Example 6.4.1.6 we show how to apply RSP(DEP) to derive simple equalities in
BPA+drt,ε–ID. In Example 6.4.2.10 on page 208 we show how to apply it to derive equal-
ities involving a newly introduced operator, namely the free merge.

Example 6.4.1.6 (Use of RSP(DEP))
First, we show how to derive the equality a = ε·a in BPA+drt,ε–ID. To begin with, we derive
a = ε·a = (ε+σ·ε)·a = ε·a+σ·ε·a = a+σ·a. Using this equality, we can then derive
a = a + σ·a = a + σ·a + σ·a = a + σ·a. Applying RSP(DEP), we now get the desired
result a = ε·a. Note that the converse, namely a = a·ε, does not hold, as a·ε can still
idle after it has done an a, while a cannot.

Secondly, we show how to derive the equality ε·x+ε·y = ε·(x+y). Applying the axioms,
we get ε·x+ε·y = (ε+σ·ε)·x+(ε+σ·ε)·y = ε·x+σ·ε·x+ε·y+σ·ε·y = x+y+σ·(ε·x+ε·y).
Applying RSP(DEP), we now get the desired result ε·x+ ε·y = ε·(x+ y).

Thirdly, we show how to derive the equality σ·ε = ε·σ. Applying the axioms, we get
σ·ε = σ·(ε + σ·ε) = σ·ε + σ·σ·ε = σ + σ·σ·ε. Applying RSP(DEP), we now get the
desired result σ·ε = ε·σ.

Definition 6.4.1.7 (Semantics of BPAdrt,ε–ID)
The semantics of BPAdrt,ε–ID are given by the term-deduction system T(BPAdrt,ε–ID), in-
duced by the deduction rules for BPA−drt,ε–ID given in Definition 6.3.1.4 on page 180, and
the additional deduction rules for BPAdrt,ε–ID shown in Table 6.12 on the next page.

☞ The new deduction rules are very simple: a, δ, and ε can do a time-step to themselves,
a can do an a-step to ε, and ε has the option to terminate.
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a a→ ε a σ→ a δ σ→ δ ε σ→ ε ε↓

Table 6.12: Additional deduction rules for BPAdrt,ε–ID.

Theorem 6.4.1.8 (Time Determinism for BPAdrt,ε–ID)
Let x, y, and y′ be closed BPAdrt,ε–ID terms. Then we have:

T(BPAdrt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

Proof Next to the cases treated in Theorem 6.3.1.5 on page 181, we only have to exam-
ine the cases x ≡ a for a ∈ Aδ and x ≡ ε. For all these cases we have thatT(BPAdrt,ε–ID) î
x σ→ y, x σ→ y′ implies that y ≡ y′ ≡ x, and we are done. �

Definition 6.4.1.9 (Bisimulation and Bisimulation Model for BPAdrt,ε–ID)
Bisimulation for BPAdrt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “BPAdrt,ε–ID” in Definition 6.3.1.6 on
page 182 and Definition 6.3.1.7 on page 182.

Definition 6.4.1.10 (Basic Terms of BPAdrt,ε–ID)
We define (σ, δ, ε, δ, ε)-basic terms inductively as follows:

(i). The constant ε is a (σ,δ, ε, δ, ε)-basic term,

(ii). if a ∈ Aδ and t is a (σ,δ, ε, δ, ε)-basic term, then a·t is a (σ,δ, ε, δ, ε)-basic term,

(iii). if t and s are (σ,δ, ε, δ, ε)-basic terms, then t + s is a (σ,δ, ε, δ, ε)-basic term,

(iv). if t is a (σ,δ, ε, δ, ε)-basic term, then σ·t and ε·t are (σ, δ, ε, δ, ε)-basic terms.

From now on, when we speak of basic terms in the context of BPAdrt,ε–ID, we mean
(σ,δ, ε, δ, ε)-basic terms.

Theorem 6.4.1.11 (General Form of Basic Terms of BPAdrt,ε–ID)
Modulo the commutativity and associativity of the +, all basic terms t of BPA−drt,ε–ID are of
the form:

t ≡
∑
i<m
ai·si +

∑
j<n
σ·uj +

∑

k<p
ε·vk +

∑

l<q
ε

for m,n,p, q ∈ N, m+ n+ p+ q ≥ 1, ai ∈ Aδ, and basic terms si, uj, and vk.

Proof Trivial, by inspection of the definition of basic terms, Definition 6.4.1.10. Ob-
serve that the general form of basic terms is closed under the formation rules given in
Definition 6.4.1.10. �

Theorem 6.4.1.12 (Elimination for BPA+drt,ε–ID)
Let t be a closed BPAdrt,ε–ID term. Then there is a basic term s such that BPA+drt,ε–ID ` s = t.
Proof Use the lexicographical path ordering method described in Proof Outline 4.2.1.1
on page 68. We give no details. �
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Theorem 6.4.1.13 (Soundness of BPA+drt,ε–ID)
The set of closed BPAdrt,ε–ID terms modulo bisimulation equivalence is a model of the ax-
ioms of BPA+drt,ε–ID.

Proof Use the direct method described in Proof Outline 4.2.2.1 on page 69. Further-
more, prove the soundness of the recursion principle RSP(DEP) separately. We give no
details. �

Theorem 6.4.1.14 (Completeness of BPA+drt,ε–ID)
The axiom system BPA+drt,ε–ID is a complete axiomatization of the set of closed BPAdrt,ε–ID
terms modulo bisimulation equivalence.

Proof Use the direct method described in Proof Outline 4.2.3.1 on page 70. We give no
details. �

6.4.2 PAdrt,ε–ID

In this section, we define the process algebra PAdrt,ε–ID, which is basically the process
algebra BPAdrt,ε–ID extended with the free merge. Adding the free merge to BPAdrt,ε–ID
to get PAdrt,ε–ID is entirely similar to adding the free merge in the case without delayable
actions (treated Section 6.3.2 on page 187), so we contend ourselves with only giving one
example to illustrate the new process algebra.

Definition 6.4.2.1 (Signature of PAdrt,ε–ID)
The signature of PAdrt,ε–ID consists of the undelayable actions {a|a ∈ A}, the delayable
actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable deadlock constant
δ, the time-unit delay constant σ, the undelayable empty process constant ε, the delayable
empty process constant ε, the alternative composition operator +, the sequential compo-
sition operator ·, the “now” operator νrel, the free merge operator ‖, and the left merge
operator ‖ .

Definition 6.4.2.2 (Axioms of PAdrt,ε–ID)
The process algebra PAdrt,ε–ID is axiomatized by the axioms of PA−drt,ε–ID given in Def-
inition 6.3.2.2 on page 187, and the Axioms DEP and DA that are shown in Table 6.10
on page 204: PAdrt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DEP + DA +
DRTEM1–DRTEM12.

Definition 6.4.2.3 (Semantics of PAdrt,ε–ID)
The semantics of PAdrt,ε–ID are given by the term-deduction system T(PAdrt,ε–ID), in-
duced by the deduction rules for PA−drt,ε–ID given in Definition 6.3.2.7 on page 190, and
the additional deduction rules for BPAdrt,ε–ID shown in Table 6.12 on the facing page.

Theorem 6.4.2.4 (Time Determinism for PAdrt,ε–ID)
Let x, y, and y′ be closed PAdrt,ε–ID terms. Then we have:

T(PAdrt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

Proof Proven in the same way as Theorem 6.4.1.8 on the preceding page, extending
it with the extra cases given in the proof of Theorem 6.3.2.8 on page 190. We give no
details. �
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Definition 6.4.2.5 (Bisimulation and Bisimulation Model for PAdrt,ε–ID)
Bisimulation for PAdrt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “PAdrt,ε–ID” in Definition 6.3.1.6 on
page 182 and Definition 6.3.1.7 on page 182.

Definition 6.4.2.6 (Basic Terms of PAdrt,ε–ID)
When we speak of basic terms in the context of PAdrt,ε–ID, we mean (σ,δ, ε, δ, ε)-basic
terms as defined in Definition 6.4.1.10 on page 206.

Theorem 6.4.2.7 (Elimination for PA+drt,ε–ID)
Let t be a closed PAdrt,ε–ID term. Then there is a basic term s such that PA+drt,ε–ID ` s = t.

Proof Use the direct method described in Proof Outline 4.2.1.2 on page 68. We give no
details. �

Theorem 6.4.2.8 (Soundness of PA+drt,ε–ID)
The set of closed PAdrt,ε–ID terms modulo bisimulation equivalence is a model of the axioms
of PA+drt,ε–ID.

Proof Use the direct method described in Proof Outline 4.2.2.1 on page 69. We give no
details. �

Theorem 6.4.2.9 (Completeness of PA+drt,ε–ID)
The axiom system PA+drt,ε–ID is a complete axiomatization of the set of closed PAdrt,ε–ID
terms modulo bisimulation equivalence.

Proof Use Verhoef’s method described in Proof Outline 4.2.3.4 on page 71. We give no
details. �

Example 6.4.2.10 (Use of RSP(DEP) with PAdrt,ε–ID)
We show how to derive the equality a ‖ b = a·b + b·a. Applying the axioms, we get
a ‖ b = a ‖ b + b ‖ a = (a + σ ·a) ‖ b + (b + σ ·b) ‖ a = a ‖ b + σ ·a ‖ (b + σ ·b) +
b ‖ a+σ·b ‖ (a+σ·a) = a·b+σ·(a ‖ b)+ b·a+σ·(b ‖ a) = a·b+ b·a+σ·(a ‖ b).
Applying RSP(DEP), and using ε·(x + y) = ε·x + ε·y (see Example 6.4.1.6 on page 205),
we now get a ‖ b = ε·(a·b+ b·a) = ε·a·b+ ε·b·a = a·b+ b·a.

Proposition 6.4.2.11 (Properties of PAdrt,ε–ID)
Let x be a basic term and a ∈ Aδ. Then the following properties hold:

(i). PAdrt,ε–ID ` x ‖ ε = x

(ii). PAdrt,ε–ID ` ε ‖ x = x

(iii). PAdrt,ε–ID ` a ‖ x = a·x

(iv). PAdrt,ε–ID ` δ ‖ x = δ

(v). PAdrt,ε–ID ` x ‖ ε = x

Proof In the same manner as Proposition 6.3.2.14 on page 192. We give no details. �
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Theorem 6.4.2.12 (Axioms of Standard Concurrency for PA+drt,ε–ID)
Let x, y, z be closed PAdrt,ε–ID terms. Then the following properties hold:

(i). PA+drt,ε–ID ` x ‖ y = y ‖ x
(ii). PA+drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)
(iii). PA+drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

Proof In the same manner as Theorem 6.3.2.16 on page 195. We give no details. �

Corollary 6.4.2.13 (Commutativity and Associativity of the Merge)
For closed terms, the free merge operator of PA+drt,ε–ID is commutative and associative.

Proof This follows directly from Theorem 6.4.2.12. �

6.4.3 ACPdrt,ε–ID

In this section, we define the process algebra ACPdrt,ε–ID, which is basically the process
algebra PAdrt,ε–ID with the free merge modified to merge. Again, adding the merge is
entirely similar to adding the merge in the case without delayable actions (treated in Sec-
tion 6.3.3 on page 198).

Definition 6.4.3.1 (Signature of ACPdrt,ε–ID)
The signature of ACPdrt,ε–ID consists of the undelayable actions {a|a ∈ A}, the delayable
actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable deadlock constant
δ, the time-unit delay constant σ, the undelayable empty process constant ε, the delayable
empty process constant ε, the alternative composition operator +, the sequential compo-
sition operator ·, the “now” operator νrel, the merge operator ‖, the left merge operator
‖ , the communication merge operator | , and the encapsulation operator ∂H.

Definition 6.4.3.2 (Axioms of ACPdrt,ε–ID)
The process algebra ACPdrt,ε–ID is axiomatized by the axioms of ACP−drt,ε–ID given in
Definition 6.3.3.2 on page 198, and the Axioms DEP and DA shown in Table 6.10 on
page 204: ACPdrt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DEP + DA +
DRTEM2–DRTEM12 + DRTECM1–DRTECM9 + DRTECF + DRTED1–DRTED6.

Definition 6.4.3.3 (Semantics of ACPdrt,ε–ID)
The semantics of ACPdrt,ε–ID are given by the term-deduction system T(ACPdrt,ε–ID), in-
duced by the deduction rules for ACP−drt,ε–ID given in Definition 6.3.3.3 on page 198, and
the additional deduction rules for BPAdrt,ε–ID shown in Table 6.12 on page 206.

Theorem 6.4.3.4 (Time Determinism for ACPdrt,ε–ID)
Let x, y, and y′ be closed ACPdrt,ε–ID terms. Then we have:

T(ACPdrt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

Proof Proven in the same way as Theorem 6.4.1.8 on page 206, extending it with the
extra cases given in the proofs of Theorem 6.3.2.8 on page 190 and Theorem 6.3.3.4 on
page 198. We give no details. �
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Definition 6.4.3.5 (Bisimulation and Bisimulation Model for ACPdrt,ε–ID)
Bisimulation for ACPdrt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “ACPdrt,ε–ID” in Definition 6.3.1.6
on page 182 and Definition 6.3.1.7 on page 182.

Definition 6.4.3.6 (Basic Terms of ACPdrt,ε–ID)
When we speak of basic terms in the context of ACPdrt,ε–ID, we mean (σ,δ, ε, δ, ε)-basic
terms as defined in Definition 6.4.1.10 on page 206.

Theorem 6.4.3.7 (Elimination for ACP+drt,ε–ID)
Let t be a closed ACPdrt,ε–ID term. Then there is a basic term s such that ACP+drt,ε–ID ` s = t.

Proof Use the direct method described in Proof Outline 4.2.1.2 on page 68. We give no
details. �

Theorem 6.4.3.8 (Soundness of ACP+drt,ε–ID)
The set of closed ACPdrt,ε–ID terms modulo bisimulation equivalence is a model of the ax-
ioms of ACP+drt,ε–ID.

Proof Use the direct method described in Proof Outline 4.2.2.1 on page 69. We give no
details. �

Theorem 6.4.3.9 (Completeness of ACP+drt,ε–ID)
The axiom system ACP+drt,ε–ID is a complete axiomatization of the set of closed ACPdrt,ε–ID
terms modulo bisimulation equivalence.

Proof Use Verhoef’s method described in Proof Outline 4.2.3.4 on page 71. We give no
details. �

Proposition 6.4.3.10 (Properties of ACPdrt,ε–ID)
Let x be a basic term and a ∈ Aδ. Then the following properties hold:

(i). ACPdrt,ε–ID ` x ‖ ε = x
(ii). ACPdrt,ε–ID ` ε ‖ x = x
(iii). ACPdrt,ε–ID ` a ‖ x = a·x
(iv). ACPdrt,ε–ID ` δ ‖ x = δ
(v). ACPdrt,ε–ID ` x ‖ ε = x

Proof In the same manner as Proposition 6.3.3.10 on page 200. We give no details. �

Theorem 6.4.3.11 (Axioms of Standard Concurrency for ACP+drt,ε–ID)
Let x, y, z be closed ACPdrt,ε–ID terms. Then the following properties hold:

(i). ACP+drt,ε–ID ` x | y = y | x
(ii). ACP+drt,ε–ID ` x ‖ y = y ‖ x
(iii). ACP+drt,ε–ID ` (x | y) | z = x | (y | z)
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(iv). ACP+drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)
(v). ACP+drt,ε–ID ` x | (y ‖ z) = (x | y) ‖ z
(vi). ACP+drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

Proof In the same manner as Theorem 6.3.3.11 on page 201. We give no details. �

Corollary 6.4.3.12 (Commutativity and Associativity of the Merge)
For closed terms, the merge and communication merge operators of ACP+drt,ε–ID are com-
mutative and associative.

Proof This follows directly from Theorem 6.4.3.11 on the preceding page. �

6.5 Embeddings

The following embeddings hold between the process algebras given in this chapter, and
between them and the process algebras given in previous chapters:

(i). BPAδε ⊆ BPA−drt,ε–ID

(ii). PAε ⊆ PA−drt,ε–ID

(iii). ACPε ⊆ ACP−drt,ε–ID

(iv). BPAε ⊆ BPAdrt,ε–ID

(v). PAε ⊆ PAdrt,ε–ID

(vi). ACPε ⊆ ACPdrt,ε–ID

(vii). BPA−drt–ID ⊆ BPA−drt,ε–ID

(viii). PA−drt–ID ⊆ PA−drt,ε–ID

(ix). ACP−drt–ID ⊆ ACP−drt,ε–ID

(x). BPA−drt,ε–ID ⊆ BPAdrt,ε–ID

(xi). PA−drt,ε–ID ⊆ PAdrt,ε–ID

(xii). ACP−drt,ε–ID ⊆ ACPdrt,ε–ID

(xiii). BPA−drt,ε–ID ⊆ PA−drt,ε–ID ⊆ ACP−drt,ε–ID

(xiv). BPAdrt,ε–ID ⊆ PAdrt,ε–ID ⊆ ACPdrt,ε–ID

The embeddings of (i)–(iii) are achieved by projecting a onto a for a ∈ Aδε, and everything
else onto itself.

The embeddings of (iv)–(vi) can be achieved in two different ways: either by projecting
the untimed process a onto the undelayable process a for a ∈ Aδε, and everything else
onto itself, or by projecting the untimed process a onto the delayable process a·ε for
a ∈ Aδε, and everything else onto itself. Note that projecting the untimed process a
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onto the delayable process a for a ∈ Aδε will not work, as the untimed empty process ε
is a unit element for the sequential composition in BPAδε, whereas the delayable empty
process ε is not a unit element for the sequential composition in BPAdrt,ε–ID; we have
BPAδε ` a = a·ε, but BPAdrt,ε–ID ø a = a·ε. By projecting a onto a·ε we do get a proper
embedding, as BPAdrt,ε–ID ` (a·ε) = (a·ε)·(ε·ε) does indeed hold.

The embeddings of (vii)–(ix) are achieved by projecting σrel(x) onto σ·x, and every-
thing else onto itself.

The embeddings of (x)–(xiv) are achieved by projecting everything onto itself.

6.6 Conclusions

We have successfully introduced the empty process in the context of discrete-time pro-
cess algebra with relative timing. In doing so, we found that there is not much room for
choice: the constraints of the unit-element property with respect to sequential composi-
tion and merge, associativity of the merge, time determinism, and taking BPA−drt–ID as a
basis almost completely determine which course to take. We also found that the empty
process cannot straightforwardly be combined with the immediate deadlock process of
BAETEN AND BERGSTRA [24, 25].

The axioms we have given lead to a sound and complete axiomatization of our bisim-
ulation model. For closed terms, the axioms of standard concurrency are derivable.

As the behavior of the empty process is not always into accordance with one’s first
intuition (see Remark 6.3.2.4 on page 188 and Remark 6.3.2.5 on page 189), one should
be very careful when verifying protocols, to make sure that the protocol that is coded in
process algebra, is indeed the same as the one that is supposed to be under study.

The discrete-time empty process makes for a worthwhile addition to process algebra.
It can potentially be very useful in giving a formal semantics to specification languages
such as SDL and MSC. It also extends the class of processes that can be finitely specified.

The usefulness of the empty process with respect to real-life protocol verification re-
mains to be determined.



7
Fischer’s Protocol

7.1 Introduction

In this chapter we present a simple, yet non-trivial, protocol that relies heavily on time,
namely Fischer’s Protocol for mutual exclusion (introduced by FISCHER [79], see LAMPORT

[124]). We will try to prove the correctness of this protocol using the discrete-time pro-
cess algebra ACPdrt,τ, which is like ACPdrt, but has an additional constant τ that denotes
a so-called undelayable silent action.

The whole point of this exercise lies in the following two questions:

• How well suited is discrete-time process algebra to verify non-trivial systems?

• With non-trivial verifications in mind, what modifications to it are desirable?

7.2 The Protocol

In this section we give a short history of Fischer’s Protocol and discuss the proof require-
ments. After that an informal description of the protocol is given, together with an in-
formal correctness argument.

7.2.1 History

The protocol we examine is a mutual exclusion protocol, first proposed by FISCHER [79],
and later studied by, among others, LAMPORT [124], SCHNEIDER, BLOOM, AND MARZULLO

[184], ABADI AND LAMPORT [3], and JANSSEN, et al. [107]. None of these studies uses al-
gebraic methods to prove correctness; they all rely on some form of temporal logic or
Floyd-Hoare logic.

Instead of using atomic test-and-set instructions or semaphores, as is often done to
assure mutual exclusion, Fischer’s Protocol only assumes atomic reads and writes to a
shared variable. (Note that when the first mutual exclusion protocols were developed
in the late 1960s all mutual exclusion protocols were of the “shared variable kind”, see
for example DIJKSTRA [77], KNUTH, [118], DE BRUIJN [56], and LAMPORT [123]. Later on
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researchers have more concentrated on the “semaphore kind” of protocol.) Mutual ex-
clusion in Fischer’s Protocol is guaranteed by carefully placing bounds on the execution
times of the instructions, leading to a protocol which is very simple, but nevertheless
relies heavily and non-trivially on timing aspects. This makes it an ideal candidate for
the purpose we have in mind, namely to try to verify, using process algebra, a not too
difficult protocol which still has quite intricate timing aspects.

7.2.2 Proof Requirements

What does one need to prove in the case of a mutual exclusion protocol? Strange as is it
may seem, this is not all that clear. In the literature one sees requirements like:

• The actual property of mutual exclusion: only one component may be in its critical
section at any time,

• Symmetry between the components,

• No assumptions about the execution times of statements (obviously not satisfied
in our case!),

• Liveness: there should always be some process that is able to proceed,

• No starvation: it may not be that a component is permanently prohibited from en-
tering its critical section,

• Various kinds of fairness: each component should get its fair share (in various
senses) of being allowed to proceed into its critical section,

• Loosely connectedness: when one component deadlocks (outside its critical sec-
tion), this should not affect the progress of the other components,

• Minimal overhead: the protocol should make a decision as soon it has enough in-
formation to do so,

and even more requirements. Some of these requirements are related (for example: sym-
metry guarantees most kinds of fairness), and each paper about mutual exclusion seems
to have its own favorite subset of which ones to prove.

In the case of Fischer’s Protocol we choose, mostly following DIJKSTRA [77] (the ear-
liest paper on mutual exclusion), to prove the following three properties:

• Actual mutual exclusion between the two critical sections,

• Symmetry between the two components,

• No starvation.

We will not try to formalize these properties algebraically, as they do not lend themselves
easily to this. This is more due to the shortcomings of the (current) algebraic approach
than it is to unwillingness on our part; note for example that many of the above prop-
erties can indeed be very easily formalized using temporal logic. We will return to this
subject in our conclusions.
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7.2.3 First Informal Description

We will now describe the protocol in an informal way, giving an informal correctness
argument. Assume the existence of a shared variable x, to which atomic reads and writes
are possible. Initially x equals zero. In Table 7.1 we give Fischer’s Protocol expressed in
pseudo code. There are two components, running in parallel. The angle brackets (“〈”,
“〉”) denote atomicity, the assignment operator (“Í”) denotes the assignment of a value
to a variable, and the equality symbol (“=”) denotes the testing of the equality of two
expressions.

Component 1: Component 2:

repeat repeat
repeat repeat

await 〈x = 0〉; await 〈x = 0〉;
〈x Í 1〉; 〈x Í 2〉;
〈delay〉; 〈delay〉;

until 〈x = 1〉; until 〈x = 2〉;
critical section 1; critical section 2;
〈x Í 0〉; 〈x Í 0〉;

until false; until false;

Table 7.1: Fischer’s Protocol, first informal version.

The protocol proceeds as follows. Initially, the value of the shared variable is 0. When
Component 1 observes that x is 0, it will write the value 1 to x. After that, it waits for some
time, and if x then still has the value 1, it is safe to enter the critical section. Component
2 works in a similar way (using 2 instead of 1), and both components run in parallel.

The mutual exclusion property of the protocol is based on the following observation.
The delay operation causes Component 1 to wait sufficiently long so that, if Component
2 had read the value of x in its await statement before the Component 1 executed its
x Í 1 assignment, then Component 2 will have completed the following x Í 2 statement.
Therefore, it can never happen that Component 1 falls through its until statement, en-
tering critical section 1, while Component 2 is still about to execute its x Í 2 assignment.
This guarantees mutual exclusion. By symmetry, the argument also holds the other way
around.

7.2.4 Second Informal Description

Let us try to make the reasoning from the previous section a bit more solid by exactly
indicating the possible durations of the statements. First of all, the await statement may
take anywhere between 0 and∞ (infinity) time units after x becomes 0. The assignments
x Í i are supposed to take betweena and a′ time units, and the delay statements between
d and d′ time units, for fixed non-negative values a ≤ a′ and d ≤ d′ over some totally-
ordered time domain. Furthermore, assume that a′ < d, i.e. the delay always takes longer
than an assignment. For simplicity’s sake, the read actions x = i are supposed to take
0 time units, and the critical section may take any time, including 0 time units. Writing
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〈action〉t′t for an atomic action that happens between t and t′ time units after it has been
enabled, we arrive at the protocol of Table 7.2.

Component 1: Component 2:

repeat repeat
repeat repeat

await 〈x = 0〉∞0 ; await 〈x = 0〉∞0 ;

〈x Í 1〉a′a ; 〈x Í 2〉a′a ;
〈delay〉d′d ; 〈delay〉d′d ;

until 〈x = 1〉0
0; until 〈x = 2〉0

0;
critical section 1; critical section 2;

〈x Í 0〉a′a ; 〈x Í 0〉a′a ;
until false; until false;

Table 7.2: Fischer’s Protocol, second informal version.

Remember we assumed that 0 ≤ a ≤ a′ < d ≤ d′ <∞. Now we have that if Component
2 falls through its await statement, it will complete its x Í 2 assignment within at most
a′ time units. If Component 1 would have happened to complete its x Í 1 assignment
just after Component 2 fell through its await, it will take Component 1 at least d time
units to complete its delay. As a′ < d, when Component 1 reaches the until 〈x = 1〉
statement, Component 2 will have completed its x Í 2 assignment. Therefore, the value
of x has stabilized, and Component 2 can safely enter its critical section.

As a final remark: note that Fischer’s Protocol can be trivially generalized to any num-
ber n > 2 of components. This generalization, however, we will not examine.

7.3 Adding Silent Actions

In this section we extend the process algebra ACPdrt with some new features, in order to
make it suitable for the verification of Fischer’s Protocol.

7.3.1 Abstraction

Before we can start with the verification of Fischer’s Protocol, we need to introduce the
concept of silent actions. The idea behind silent actions is that often the identity of cer-
tain actions, sometimes called internal actions, is not relevant for the correctness of a
protocol. In the case of Fischer’s Protocol, for example, the assignments to the variable x
are irrelevant for the mutual exclusion properties. So, although the variable x is needed
to structure the internal behavior of the protocol, we are not interested in it when the
external behavior (i.e., the mutual exclusion properties) of the protocol is concerned.

In terms of process algebra, we express this by introducing a special constant τ, the
so-called undelayable silent action, and renaming all internal actions to this constant by
means of the so-called abstraction operator, denoted τI. We then use the special prop-
erties of the undelayable silent action to simplify the resulting process. In this way, it is
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possible to disregard the internal behavior of the protocol, while still maintaining all rel-
evant aspects of the external behavior. For more information on abstraction, and several
examples, see BAETEN AND WEIJLAND [38].

7.3.2 ACPdrt,τ

In this section we extend the process algebra ACPdrt with silent actions, resulting in the
process algebra ACPdrt,τ. The definitions we give are taken from BAETEN, BERGSTRA, AND

RENIERS [29]. As our concern (contrary to previous chapters) is not with theoretical re-
sults, but with practical applicability, we will not give any theorems, or motivations for
the axioms. For these issues, we refer to [29]. We will restrict ourselves to definitions
only.

Definition 7.3.2.1 (Signature of ACPdrt,τ)
The signature of ACPdrt,τ consists of the undelayable actions {a|a ∈ A}, the delayable ac-
tions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable deadlock constant δ,
the immediate deadlock constant δ̇, the undelayable silent action τ, the delayable silent
action τ, the alternative composition operator +, the sequential composition operator ·,
the time-unit delay operator σrel, the “now” operator νrel, the unbounded start delay op-
erator b cω, the merge operator ‖, the left merge operator ‖ , the communication merge
operator | , the encapsulation operator ∂H, and the abstraction operator τI.

Definition 7.3.2.2 (Axioms of ACPdrt,τ)
The process algebra ACPdrt,τ is axiomatized by the axioms of ACPdrt that are given in
Definition 5.3.3.2 on page 152 and Axioms DRTB1–DRTB4 and DRTT1–DRTT6 shown in
Table 7.3: ACPdrt,τ = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID
+ ATS + USD + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 + DRTCM1–DRTCM5
+ DRTCM6ID–DRTCM7ID + DRTCM12–DRTCM13 + DRTCF + DRTD1–DRTD6 + DRTMID1–
DRTMID4 + DRTB1–DRTB4 + DRTT1–DRTT6.

x·(τ·(νrel(y)+ z+ δ))+ νrel(y)) = x·(νrel(y)+ z+ δ) DRTB1

x·(τ·(νrel(y)+ z+ δ))+ z) = x·(νrel(y)+ z+ δ) DRTB2

x·(σrel(τ·(y+ δ))+ νrel(z)) = x·(σrel(y+ δ))+ νrel(z)) DRTB3

x·(τ·by + z+ δcω+ bycω) = x·by + z+ δcω DRTB4

τI(a) = a if a ∉ I DRTT1

τI(a) = τ if a ∈ I DRTT2

τI(x+ y) = τI(x)+ τI(y) DRTT3

τI(x·y) = τI(x)·τI(y) DRTT4

τI(σrel(x)) = σrel(τI(x)) DRTT5

τI(δ̇) = δ̇ DRTT6

Table 7.3: Additional axioms for ACPdrt,τ.
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Remark 7.3.2.3 (Axioms of ACPdrt,τ)
In the axioms of ACPdrt,τ we have that a in an axiom ranges over Aδτ instead of over Aδ.

Definition 7.3.2.4 (Semantics of ACPdrt,τ)
The semantics of ACPdrt,τ are given by the term-deduction systemT(ACPdrt,τ) induced by
the deduction rules for ACPdrt given in Definition 5.3.3.3 on page 153, and the additional
deduction rules for ACPdrt,τ shown in Table 7.4.

x a→ x′, a ∉ I
τI(x)

a→ τI(x′)
x a→ x′, a ∈ I
τI(x)

τ→ τI(x′)
x a→√, a ∉ I
τI(x)

a→√
x a→√, a ∈ I
τI(x)

τ→√

x σ→ x′
τI(x)

σ→ τI(x′)
ID(x)

ID(τI(x))

Table 7.4: Additional deduction rules for ACPdrt,τ.

Remark 7.3.2.5 (Semantics of ACPdrt,τ)
In the deduction rules of ACPdrt,τ we have that a in a deduction rule ranges over Aτ in-
stead of over A.

Definition 7.3.2.6 (Symbol for a Chain of τ’s)
We will write x

τ=⇒y to indicate that x can reach y by doing zero or more τ-transitions.
Formally,

τ=⇒ denotes the transitive, reflexive closure of
τ→ .

Definition 7.3.2.7 (Bisimulation for ACPdrt,τ, Part I)
Bisimulation for ACPdrt,τ is defined as follows; a binary relationR on closed ACPdrt,τ terms
is a branching tail bisimulation if the following transfer conditions hold for all closed
ACPdrt,τ terms p and q:

(i). If RS(p,q) and T(ACPdrt,τ) î p a→ p′, where a ∈ A, then there exist closed terms q′
and q′′, such that T(ACPdrt,τ) î q τ=⇒q′ a→ q′′, RS(p,q′), and RS(p′, q′′),

(ii). if RS(p,q) and T(ACPdrt,τ) î p τ→ p′, then there exists a closed term q′, such that
T(ACPdrt,τ) î q τ=⇒q′, RS(p,q′), and RS(p′, q′),

(iii). if RS(p,q) and T(ACPdrt,τ) î p σ→ p′, then there exist closed terms q′ and q′′, such
that T(ACPdrt,τ) î q τ=⇒q′ σ→ q′′, RS(p,q′), and RS(p′, q′′),

(iv). if RS(p,q) and T(ACPdrt,τ) î p a→√, where a ∈ A, then there exists a closed term
q′, such that T(ACPdrt,τ) î q τ=⇒q′ a→√ and RS(p,q′).

(v). if RS(p,q) and T(ACPdrt,τ) î p τ→√, then there exists a closed term q′, such that
T(ACPdrt,τ) î q τ=⇒q′ τ→√ and RS(p,q′),
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(vi). if RS(p,q) and T(ACPdrt,τ) î ID(p), then T(ACPdrt,τ) î ID(q).

Two ACPdrt,τ terms p and q are branching tail bisimilar if there exists a branching tail
bisimulation relation R such that R(p,q).

Definition 7.3.2.8 (Bisimulation for ACPdrt,τ, Part II)
If R is a branching tail bisimulation, and for certain ACPdrt,τ terms r and s we have
RS(r, s), then we say that the pair (r, s) satisfies the root condition if the following trans-
fer conditions hold:

(i). If T(ACPdrt,τ) î r a→ r′, where a ∈ A, then there exists a closed term s′, such that
T(ACPdrt,τ) î s a→ s′ and RS(r′, s′),

(ii). if T(ACPdrt,τ) î r τ→ r′, then there exists a closed term s′, such that T(ACPdrt,τ) î
s τ→ s′ and RS(r′, s′),

(iii). if T(ACPdrt,τ) î r σ→ r′, then there exists a closed term s′, such that T(ACPdrt,τ) î
s σ→ s′ and RS(r′, s′),

(iv). if T(ACPdrt,τ) î r a→√, where a ∈ A, then T(ACPdrt,τ) î s a→√,

(v). if T(ACPdrt,τ) î r τ→√, then that T(ACPdrt,τ) î s τ→√.

Two ACPdrt,τ terms p and q are rooted branching tail bisimilar, notation p ∼ACPdrt,τ q, if
there exists a branching tail bisimulation relation R such that R(p,q), and for all ACPdrt,τ
terms r and s we have that if T(ACPdrt,τ) î p σ=⇒r, q σ=⇒s and R(r, s), the pair (r, s) satis-
fies the root condition.

Definition 7.3.2.9 (Bisimulation Model for ACPdrt,τ)
The bisimulation model for ACPdrt,τ is defined in the same way as for BPA. Replace “BPA”
by “ACPdrt,τ” in Definition 2.3.1.16 on page 12.

Remark 7.3.2.10 (Elimination, Soundness, and Completeness of ACPdrt,τ)
We suppose that the soundness property for ACPdrt,τ holds, although we have not tried
to prove this. The elimination and completeness properties do not hold; we need at least
add a recursion principle (or corresponding axioms) before we can properly derive equali-
ties containing delayable actions. For more information on soundness and completeness
issues involving abstraction, see BAETEN, BERGSTRA, AND RENIERS [29].

7.4 Specification

Having introduced the relevant operators for ACPdrt,τ, we are now ready to give a formal
specification of Fischer’s Protocol FPdrt, using ACPdrt,τ in Table 7.5 on the next page. We
specify the special case where a = a′ = 0 and d = d′ = 1.

When we look at this specification, we see a number of processes (A, B, V, . . . ) that are
defined in terms of each other. These processes should be considered special constants,
that are added to the signature in an ad hoc manner, for the purpose of this one verifi-
cation. Likewise, the equations of this specification should be considered ad hoc axioms
for these new constants. In this way, we can mimic a limited form of recursion, without
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A = A0

A0 = r(x = 0)·A1

A1 = s(x Í 1)·A2

A2 = σrel(A3)
A3 = (r(x = 0)+ r(x = 2))·A0 + r(x = 1)·A4

A4 = EnterCS1·A5

A5 = LeaveCS1·A6

A6 = s(x Í 0)·A0

B = B0

B0 = r(x = 0)·B1

B1 = s(x Í 2)·B2

B2 = σrel(B3)
B3 = (r(x = 0)+ r(x = 1)·B0 + r(x = 2)·B4

B4 = EnterCS2·B5

B5 = LeaveCS2·B6

B6 = s(x Í 0)·B0

V = V0

V0 = (r(x Í 0)+ s(x = 0))·V0 + r(x Í 1)·V1 + r(x Í 2)·V2 +σrel(V0)
V1 = (r(x Í 1)+ s(x = 1))·V1 + r(x Í 0)·V0 + r(x Í 2)·V2 +σrel(V1)
V2 = (r(x Í 2)+ s(x = 2))·V2 + r(x Í 0)·V0 + r(x Í 1)·V1 +σrel(V2)

γ(r(α), s(α)) = c(α) for α ∈ {x = i, x Í i|i ∈ {0,1,2}}

H = {r(α), s(α)|α ∈ {x = i, x Í i|i ∈ {0,1,2}}}

FPdrt = ∂H(A ‖ B ‖ V)

Table 7.5: Fischer’s Protocol in ACPdrt,τ.

the need for formally introducing a full recursion apparatus (which would be quite com-
plicated in the case of ACPdrt,τ). This method, of course, only works when the equations
are reasonably well-behaved, as is the case here.

The specification can be understood intuitively in the following way. There are three
processes running concurrently, namely A, B, and V. The processes A and B model
“Component 1” and “Component 2” of Table 7.1 on page 215 respectively, and the pro-
cess V models the variable x.

The process V can be in one of three states: V0, V1, or V2, corresponding to the pos-
sible values of x. In any stateVi, V is capable of sending the message x = i, signaling that
the value of x is currently i, after which V will continue in state Vi. Furthermore, V is in
any state Vi capable of receiving the message x Í j for any j, indicating that x is being
assigned with the value j. After such an assignmentV will continue in stateVj. Finally, V
is always capable of letting time pass. The process V constructed in this way behaves as
a “variable server”: if process A or B wants to assign a value i to x it performs the action
s(x Í i). If it wants to check if x has the value i, it performs the action r(x = i). (The
idea to construct the variable server in this way was taken from NIEUWLAND [156].)

The process A is constructed as follows. First (in state A0) it waits for an undeter-
mined amount of time till x is 0 (r(x = 0)). Then (in state A1) it sets x to 1 (s(x Í 1)).
After that (in state A2), it waits till the end of the time slice (σrel(A3)). When it has ar-
rived in stateA3, it will examine the contents of x, and either jump back to A0 (if x = 0 or
x = 2), or continue with state A4 (if x = 1). Thereafter, it enters its critical section, leaves
it again, and resets x back to 0 in state A6, after which it repeats the whole procedure
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over again. The process B is constructed in the same way as A.
The entire protocol, FPdrt, now consists of the processes A, B, and V running con-

currently, with all r(. . . ) and s(. . . ) actions encapsulated, thus forcing these actions to
communicate to c(. . . ) actions. Note that the assignment takes no time (a = a′ = 0) and
the delay takes one time unit (d = d′ = 1).

7.5 Verification

In order to prove the protocol FPdrt correct, we first rewrite the equations of Table 7.5
on the preceding page into an equivalent linear system of equations. These equations
should only contain the operators +, ·, and σ, and only undelayable actions. With the
equations in this format, we can easily construct the process graph of FPdrt.

Finding this linear specification for FPdrt is very easy (at least in principle): we repeat-
edly apply the axioms to expand the merge operators, and throw away the summands
that are encapsulated. Starting with FPdrt, which we will call X0, we expand every state
we encounter, where new states we reach are numbered using process variables Xi. In
this way, we arrive at the 32 processes X0, . . . ,X31 given below:

FPdrt = ∂H(A ‖ B ‖ V)
= ∂H(A0 ‖ B0 ‖ V0)
= X0

X0 = ∂H(A0 ‖ B0 ‖ V0)
= c(x = 0)·∂H(A1 ‖ B0 ‖ V0)+ c(x = 0)·∂H(A0 ‖ B1 ‖ V0)+
σ(∂H(A0 ‖ B0 ‖ V0))

= c(x = 0)·X1 + c(x = 0)·X2 +σ(X0)

X1 = ∂H(A1 ‖ B0 ‖ V0)
= c(x Í 1)·∂H(A2 ‖ B0 ‖ V1)+ c(x = 0)·∂H(A1 ‖ B1 ‖ V0)
= c(x Í 1)·X23 + c(x = 0)·X3

X2 = ∂H(A0 ‖ B1 ‖ V0)
= c(x = 0)·∂H(A1 ‖ B1 ‖ V0)+ c(x Í 2)·∂H(A0 ‖ B2 ‖ V2)
= c(x = 0)·X3 + c(x Í 2)·X4

X3 = ∂H(A1 ‖ B1 ‖ V0)
= c(x Í 1)·∂H(A2 ‖ B1 ‖ V1)+ c(x Í 2)·∂H(A1 ‖ B2 ‖ V2)
= c(x Í 1)·X9 + c(x Í 2)·X10



222 7 • Fischer’s Protocol

X4 = ∂H(A0 ‖ B2 ‖ V2)
= σ(∂H(A0 ‖ B3 ‖ V2))
= σ(X5)

X5 = ∂H(A0 ‖ B3 ‖ V2)
= c(x = 2)·∂H(A0 ‖ B4 ‖ V2)
= c(x = 2)·X6

X6 = ∂H(A0 ‖ B4 ‖ V2)
= EnterCS2·∂H(A0 ‖ B5 ‖ V2)
= EnterCS2·X7

X7 = ∂H(A0 ‖ B5 ‖ V2)
= LeaveCS2·∂H(A0 ‖ B6 ‖ V2)
= LeaveCS2·X8

X8 = ∂H(A0 ‖ B6 ‖ V2)
= c(x Í 0)·∂H(A0 ‖ B0 ‖ V0)
= c(x Í 0)·X0

X9 = ∂H(A2 ‖ B1 ‖ V1)
= c(x Í 2)·∂H(A2 ‖ B2 ‖ V2)
= c(x Í 2)·X24

X10 = ∂H(A1 ‖ B2 ‖ V2)
= c(x Í 1)·∂H(A2 ‖ B2 ‖ V1)
= c(x Í 1)·X11

X11 = ∂H(A2 ‖ B2 ‖ V1)
= σ(∂H(A3 ‖ B3 ‖ V1))
= σ(X12)

X12 = ∂H(A3 ‖ B3 ‖ V1)
= c(x = 1)·∂H(A4 ‖ B3 ‖ V1)+ c(x = 1)·∂H(A3 ‖ B0 ‖ V1)
= c(x = 1)·X13 + c(x = 1)·X14
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X13 = ∂H(A4 ‖ B3 ‖ V1)
= EnterCS1·∂H(A5 ‖ B3 ‖ V1)+ c(x = 1)·∂H(A4 ‖ B0 ‖ V1)
= EnterCS1·X18 + c(x = 1)·X15

X14 = ∂H(A3 ‖ B0 ‖ V1)
= c(x = 1)·∂H(A4 ‖ B0 ‖ V1)
= c(x = 1)·X15

X15 = ∂H(A4 ‖ B0 ‖ V1)
= EnterCS1·∂H(A5 ‖ B0 ‖ V1)
= EnterCS1·X16

X16 = ∂H(A5 ‖ B0 ‖ V1)
= LeaveCS1·∂H(A6 ‖ B0 ‖ V1)
= LeaveCS1·X17

X17 = ∂H(A6 ‖ B0 ‖ V1)
= c(x Í 0)·∂H(A0 ‖ B0 ‖ V0)
= c(x Í 0)·X0

X18 = ∂H(A5 ‖ B3 ‖ V1)
= LeaveCS1·∂H(A6 ‖ B3 ‖ V1)+ c(x = 1)·∂H(A5 ‖ B0 ‖ V1)
= LeaveCS1·X19 + c(x = 1)·X16

X19 = ∂H(A6 ‖ B3 ‖ V1)
= c(x Í 0)·∂H(A0 ‖ B3 ‖ V0)+ c(x = 1)·∂H(A6 ‖ B0 ‖ V1)
= c(x Í 0)·X20 + c(x = 1)·X17

X20 = ∂H(A0 ‖ B3 ‖ V0)
= c(x = 0)·∂H(A1 ‖ B3 ‖ V0)+ c(x = 0)·∂H(A0 ‖ B0 ‖ V0)
= c(x = 0)·X21 + c(x = 0)·X0

X21 = ∂H(A1 ‖ B3 ‖ V0)
= c(x Í 1)·∂H(A2 ‖ B3 ‖ V1)+ c(x = 0)·∂H(A1 ‖ B0 ‖ V0)
= c(x Í 1)·X22 + c(x = 0)·X1
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X22 = ∂H(A2 ‖ B3 ‖ V1)
= c(x = 1)·∂H(A2 ‖ B0 ‖ V1)
= c(x = 1)·X23

X23 = ∂H(A2 ‖ B0 ‖ V1)
= σ(∂H(A3 ‖ B0 ‖ V1))
= σ(X14)

X24 = ∂H(A2 ‖ B2 ‖ V2)
= σ(∂H(A3 ‖ B3 ‖ V2))
= σ(X25)

X25 = ∂H(A3 ‖ B3 ‖ V2)
= c(x = 2)·∂H(A0 ‖ B3 ‖ V2)+ c(x = 2)·∂H(A3 ‖ B4 ‖ V2)
= c(x = 2)·X5 + c(x = 2)·X26

X26 = ∂H(A3 ‖ B4 ‖ V2)
= c(x = 2)·∂H(A0 ‖ B4 ‖ V2)+ EnterCS2·∂H(A3 ‖ B5 ‖ V2)
= c(x = 2)·X6 + EnterCS2·X27

X27 = ∂H(A3 ‖ B5 ‖ V2)
= c(x = 2)·∂H(A0 ‖ B5 ‖ V2)+ LeaveCS2·∂H(A3 ‖ B6 ‖ V2)
= c(x = 2)·X7 + LeaveCS2·X28

X28 = ∂H(A3 ‖ B6 ‖ V2)
= c(x = 2)·∂H(A0 ‖ B6 ‖ V2)+ c(x Í 0)·∂H(A3 ‖ B0 ‖ V0)
= c(x = 2)·X8 + c(x Í 0)·X29

X29 = ∂H(A3 ‖ B0 ‖ V0)
= c(x = 0)·∂H(A0 ‖ B0 ‖ V0)+ c(x = 0)·∂H(A3 ‖ B1 ‖ V0)
= c(x = 0)·X0 + c(x = 0)·X30

X30 = ∂H(A3 ‖ B1 ‖ V0)
= c(x = 0)·∂H(A0 ‖ B1 ‖ V0)+ c(x Í 2)·∂H(A3 ‖ B2 ‖ V2)
= c(x = 0)·X2 + c(x Í 2)·X31
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X31 = ∂H(A3 ‖ B2 ‖ V2)
= c(x = 2)·∂H(A0 ‖ B2 ‖ V2)
= c(x = 2)·X4

From this linear system we then construct, using the deduction rules of ACPdrt,τ, the
process graph of FPdrt. This process graph is shown in Table 7.6. For clarity, we do not
label the c(. . . ) edges, and abbreviate the four “EnterCS” and “LeaveCS” actions by E1,
E2, L1, and L2.

X4 X5 X6 X7

X10

X11

X12

X24 X25 X26 X27 X28 X29 X30 X31

X23

X15

X14

X16

X18X17

X19

X20

X21

X22

X3

X0

X9

X2 X8

X13

σ

σ

σ

L2E2

E2 L2

L1 E1

L1

E1

σ

X1

σ

Table 7.6: The process graph of FPdrt.

Now define the set I of internal actions as:

I = {c(α)|α ∈ {x = i, x Í i|i ∈ {0,1,2}}}
(i.e. all communication actions) and rename these actions into τ, yielding the process
graph of τI(FPdrt). On this graph we compute the maximal rooted branching tail bisim-
ulation between the graph and itself. This gives us the equivalence classes XA, . . . ,XH
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given below:

XA = {X0, X8, X17,X19, X20,X28, X29} XE = {X16,X18}
XB = {X1, X2, X3,X21,X30} XF = {X4,X9,X24, X31}
XC = {X10,X11,X22, X23} XG = {X5,X6,X25, X26}
XD = {X12,X13,X14, X15} XH = {X7,X27}

When we divide out this equivalence relation we arrive at the reduced process graph
shown in Table 7.7, where the unlabeled edges are τ-edges. On this graph we will now
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Table 7.7: The reduced process graph of τI(FPdrt).

be able to check all required properties very easily. The three requirements for mutual
exclusion we chose in Section 7.2.2 are satisfied for the following reasons:

• Actual mutual exclusion: It can be easily seen from the graph of Table 7.7 that
an EnterCS1 action is always immediately followed by a LeaveCS1 action, and the
same holds for EnterCS2 and LeaveCS2. Therefore, it cannot be the case that both
components are in their critical section at the same time.

• Symmetry: As the graph is symmetrical with respect to the paths from the root,
through the critical sections of the components, back to the root, it is clear that the
protocol is symmetrical with respect to the components.

• No starvation: Whichever state the protocol is in, there is always a path leading to
each component’s critical section. Therefore, assuming fairness, it cannot be the
case that one component is permanently prohibited from entering its critical sec-
tion.

This completes the proof of the correctness of FPdrt for the special case where a = a′ = 0
and d = d′ = 1. The proof for the general case where 0 < a < a′ < d < d′ < 2a proceeds
along the same lines, although the calculations get much more complicated. In VEREIJKEN

[191] this proof is written out in full, not using discrete-time process algebra, but using
real-time process algebra.
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7.6 Conclusions

As we have seen, Fischer’s protocol can be proven correct quite satisfactorily using
techniques from process algebra. This however does not mean too much; it is an al-
most trivial protocol, that has been solved time and time again using different kinds of
formalisms. But it is not all that bad either; see for example SCHNEIDER, BLOOM, AND

MARZULLO [184] where an (incomplete) proof is given of Fischer’s protocol. When it would
be written out in full detail, that proof would be about as long and tedious as ours is
(SCHNEIDER [183]), and the same probably holds for a detailed temporal logic proof (ABADI

[2]).
Looking at our proof one observes that, unfortunately, only the first part of it is purely

algebraic. In the second part, we need to fall back to model-dependent reasoning, and
that is disappointing. Furthermore, although the proof is conceptually very clear and
easy, the inner workings required a lot of bothersome and failure-prone computations.
It seems valid to doubt whether all these calculations were really necessary. Much of their
complexity results from the fact that the theories we used are based on bisimulation se-
mantics, which preserves very many moments of choice, while that was not at all required
for the proof we were constructing. Then, the so-called algebraic advantage, i.e. the abil-
ity to calculate with processes without having to write out the entire state space, is almost
absent. This is also disappointing; although the algebraic advantage manifests itself very
clearly when verifying protocols that do not exhibit much internal parallelism, such as
the Alternating Bit Protocol (see for example BAETEN AND WEIJLAND [38]), it seems to be
lost in the verification of Fischer’s protocol, which has very much internal parallelism. As
a result, we get the worst of both worlds: the state explosion from naive model checking,
and the complicated term rewriting from discrete-time process algebra.

Let us however not become too pessimistic. It has become clear that discrete-time
process algebra can indeed be applied to protocols with intricate timing aspects. It
would be unrealistic to expect that these process algebras, which were designed without
much regard for their practical application, would in their unmodified form be splendidly
suited for real-life verifications. There is a lot of room for tuning these theories towards
more practicality. We see at least three directions in which we would like to proceed,
preferably in all three at the same time.

• First of all, it would be nice to have a discrete-time process algebra that does not
lean on bisimulation semantics only. It is simply not always a good idea to preserve
all internal moments of choice. If we had a theory based on, say, ready semantics or
failure semantics, we would probably gain some of our algebraic advantage back.

But maybe abandoning bisimulation semantics altogether would be too crude. A
more sophisticated and subtle approach could be to abstract only from those in-
ternal moments of choice we really want to abstract from. This could be imple-
mented by introducing a special choice operator next to the ordinary choice. For
example, the delayed choice of BAETEN AND MAUW [34], the partial choice of BAE-
TEN AND BERGSTRA [20], or the delayed choice with abstraction of D’ARGENIO AND

MAUW [68].

• Secondly, it might be profitable to augment process algebra with a (limited) form of
temporal logic. Looking at the linearization process of FPdrt, it is clear that much
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of the calculations involved are needed to keep track of which time-slice we are in.
Or, on a conceptually higher level: the calculations get complicated because we do
not have adequate tools for denoting the precise flow of time. When working with a
hybrid process algebra-temporal logic theory (still predominantly algebraic!), these
complications would probably not have arisen. See for example BAETEN, BERGSTRA,
AND BOL [28], where this approach is investigated.

• Thirdly, we might just as well admit that verifications involving time are difficult,
and probably will remain so for some years to come. Therefore, it may be advisable
to have automated tools at our disposal. One could for example imagine a “pro-
cess algebra calculator” which, like an ordinary arithmetic calculator, could assist
in performing complex calculations. This way we could put the human back into
the driver’s seat of the verification process, instead of having him stumble in the
dark while juggling complex process terms. Assuming we can indeed exploit our al-
gebraic advantage, this approach could be very interesting. A combination of easy
process term manipulation and powerful algebraic techniques could lead to verifi-
cations that are both short and easy to construct.

Concluding, we can say that the verification of Fischer’s Protocol by process algebraic
means as given in this chapter is not very straightforward, and not very algebraic. But
nonetheless, there are several promising directions for future research that could lead
to new, algebraically oriented theories that may perform much better for real-life verifi-
cations.



8
Related Work

8.1 Introduction

In this chapter, we examine a number of algebraically oriented timed process formalisms
that have been published by others. For each formalism, we give a short indication of
its foundations, the nature of the time domain (discrete, dense, unspecified, etc.), the
nature of the semantics, and the special features it supports. Whenever the formalism
under consideration has interesting connections with the work presented in this thesis,
we delve somewhat deeper into it, and discuss the topic with some technical depth. On
the whole, however, the emphasis is more on giving a general overview than on discussing
technical details.

In choosing which formalisms to discuss, we tried to be quite comprehensive; rather
than restricting ourselves to a number of closely related formalisms, we have opted to
treat a large number of formalisms, even when that meant we needed to be very concise in
some cases. Still, we make no claims as to the completeness of our overview. The field
of timed process algebras is so large that we cannot even hope to have covered every
formalism described in the literature.

8.2 ACP-Style Timed Process Algebras

In this section, we look at a number of formalisms that find their common roots in
the Algebra of Communicating Processes (see BERGSTRA AND KLOP [45] and BAETEN AND

WEIJLAND [38]).

8.2.1 ACP with Real-Time Steps (Groote)

In GROOTE [87, 88] we find an ACP-style timed process algebra that uses a discrete time
domain (the author uses “real time”, somewhat misleadingly, in the sense of “explicit
time”, as opposed to the “implicit time” that can be achieved by cleverly encoding time
in untimed process algebra). The semantics of the process algebra is given using Plotkin-
style rules (see PLOTKIN [166]), leading to a weak-bisimulation model. Among the features
of the process algebra are the empty process, the silent action, and recursion.

229
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In these articles, the author introduces a special constant t that is conceptually very
much like our constantσ from Chapter 6. He rejects (on philosophical grounds) the time-
factorization principle, which makes the axioms somewhat simpler, and the operational
semantics a great deal simpler. The empty process defined is a unit element with respect
to the sequential composition but not with respect to the merge (he has, for example (in
our notation) that ε ‖ σ = δ, and as a result of that, a ‖ σ·b = a·δ).

The interaction between t and the merge is encoded in the communication merge: the
author uses (in our notation) σ·x ‖ y = δ, and then needs to use σ·x |σ·y = σ·(x ‖ y) to
let t propagate through the merge. As a result, he has no free merge, and therefore no
PA-like process algebra.

Using recursion, the author defines a process ∆ (“delay”), that is both in its behavior
and definition very much like our delayable empty process ε.

The author ends with an example of a verification of a manufacturing workcell.

8.2.2 Two-Phase Discrete-Time Process Algebra (Baeten and Bergstra)

In BAETEN AND BERGSTRA [21, 24] we find a number of ACP-style timed process algebras
that use a discrete time domain. The semantics of the process algebras is given using
Plotkin-style rules, leading to a strong-bisimulation model.

These papers have laid the foundation on which the process algebras of Chapters 3
to 7 of this thesis were developed.

The authors define process algebras BPAdrt, PAdrt, and ACPdrt that are very similar to
the correspondingly named process algebras in this thesis. Next to a bisimulation model,
they also define a graph model and a projective-limit model.

In addition to the relative-time process algebras, as treated in this thesis, the authors
also define absolute-time process algebras, in which all timing is related to a global clock
instead of to the current time slice as is done in relative time. We give an example, where,
following the authors, we write cts(a) to denote an actiona in the current time-slice (i.e., a
relative-time undelayable action a), and fts(a) to denote an action a in the first time-slice
(in the absolute sense). We have operators σrel(x) and σabs(x) that denote the process x
in the next time slice, in the relative sense and absolute sense respectively.

First, the relative time example. Here we have the following equality:

σrel(cts(a))·σrel(cts(b))·σrel(cts(c)) = σrel(cts(a)·σrel(cts(b)·σrel(cts(c))))

As can be seen, the σrel operator behaves in a relative fashion: the a executes in the sec-
ond time-slice, the b in the third, and the c in the fourth, because the σrel operators push
their arguments one time-slice forward in time relative to the time-slice in which they
occur.

Then, the corresponding absolute time example. Here we have this equality:

σabs(fts(a))·σabs(fts(b))·σabs(fts(c)) = σabs(fts(a)·fts(b)·fts(c))

We see that the σabs operator behaves in an absolute fashion: the a, b, and c all execute
in the second time slice, because the σabs operators push their argument one time-slice
forward in time absolutely, i.e., with respect to the very first time-slice, and irrespective
to the time-slice in which they occur.
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All process algebras treated, like all discrete-time process algebras in this thesis,
use two-phase notation: they treat actions and time separately. So, when we write
σrel(cts(a)) to denote a in the second relative time-slice, we have distinct notations for
time (namely: σrel) and actions (namely: cts(a)). Similarly, in the structured operational
semantics, we treat time transitions separately from action transitions. In Section 8.2.3
we will see an approach in which time and actions are integrated into one single notation:
the timestamped notation.

The authors end with a method to combine relative timing and absolute timing in one
process algebra: this is called parametric timing. As they show, the immediate deadlock
δ̇ is needed to make this combination work. So, the immediate deadlock finds additional
justification for its existence in the combination of relative and absolute timing in one
process algebra.

8.2.3 Timestamped Discrete-Time Process Algebra (Baeten and Bergstra)

In BAETEN AND BERGSTRA [25] we find a number of ACP-style timed process algebras that
use a discrete time domain. The semantics of the process algebras is given using Plotkin-
style rules, leading to a strong-bisimulation model. Process algebras are given that use
relative timing, absolute timing, and parametric timing.

The process algebras the authors introduce are similar to the process algebras dis-
cussed in Section 8.2.2, except that the actions are now in timestamped notation instead
of two-phase notation. In timestamped notation, time and actions are integrated into one
single notation as follows. To denote an action a in the nth time-slice, the authors write
a[n] in relative timing, and a(n) in absolute timing. Relating timestamped notation with
two-phase notation, we then conceptually have the following equalities:

a[0] = a(0) = δ̇
a[n+ 1] = σnrel(cts(a)) for n ∈ N
a(n+ 1) = σnabs(fts(a)) for n ∈ N

Using timestamped notation, we do not need the σrel and σabs operators anymore as con-
structors. This makes process expression much easier to read. We give a few examples
of derivable equalities.

First, we look at an “expired” action in absolute time:

(a(1)+ b(3))·c(2) = a(1)·c(2)+ b(3)·δ̇
(a[1]+ b[3])·c[2] = a[1]·c[2]+ b[3]·c[2]

In the first equality, the c action becomes either enabled in the first time-slice or in the
third time-slice. In the latter case, it has already expired, because it needs to execute in
the second time-slice. In such a case, the action turns into the immediate deadlock δ̇. In
relative time, expired actions do not occur, as the time-slice in which in action needs to
execute is expressed relatively to the current time-slice. So, the right-hand side of the
second equality does not contain immediate deadlock.

Next, we look at the behavior of absolute time and relative time with respect to the
merge:

a(1)·b(3) ‖ c(2)·d(4) = a(1)·c(2)·b(3)·d(4)
a[1]·b[3] ‖ c[2]·d[4] = a[1]·c[2]·b[2]·d[3]
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In the first equality absolute time is used, and therefore the timestamps on the right-
hand side are the same as the time-stamps on the left-hand side. In the second equality,
timing is relative, and therefore the timestamps change; the d action should execute in
the fourth time-slice after c executes, which is the third time-slice after b executes in the
second time-slice after c executes. Therefore, d[4] on the left-hand side becomes d[3]
on the right-hand side.

Finally, we look at an equality involving parametric time:

a(2)·b[3]·c(5)·d[7] = a(2)·b(4)·c(5)·d(11)

Here, the relative-time timestamps of the left-hand side have been converted to absolute-
time timestamps on the right-hand side.

The authors end with a simple example involving message passing, and a discussion
regarding applications.

8.2.4 Real-Time Process Algebra (Baeten and Bergstra)

In BAETEN AND BERGSTRA [16] we find a number of ACP-style timed process algebras that
use a dense time domain. The semantics of the process algebras is given using Plotkin-
style rules, leading to a strong-bisimulation model. A projective limit model is also given.

The authors define several timestamped process algebras, where the timestamps
range over the non-negative real numbers R≥0. Absolute, relative, and parametric tim-
ing are used. To denote the action a at the moment t ∈ R≥0 they write a(t) in absolute
timing and a[t] in relative timing. Actions do not take time, but only one action can oc-
cupy a given point in time, so the process a(1)·b(1) can only execute an a at time 1, and
then deadlocks.

An interesting construct the authors use is called integration, which is used to denote
an infinite summation over a subset of the time domain. For example:

∫

v∈[3,5)
a(v)

denotes the process that executes an a between time 3 (inclusively) and time 5 (exclu-
sively). Since they do not put any restriction on the form of the integration set, the inte-
gration construct provides an unusually large expressivity.

The authors end with two simple example specifications: a timed FIFO Queue, and a
timed version of the Alternating Bit Protocol.

8.2.5 Real-Time Process Algebra with Infinitesimals (Baeten and Bergstra)

In BAETEN AND BERGSTRA [22] we find a number of ACP-style timed process algebras that
use a dense time domain. The semantics of the process algebras is given using Plotkin-
style rules, leading to a strong-bisimulation model.

The process algebras defined by the authors are closely related to the process algebras
discussed in Section 8.2.4. The main difference is that this time they use the non-negative
non-standard real numbers (also called surreal numbers, see CONWAY [66] and KNUTH

[119]) as their time domain. In this time domain, so-called infinitesimals are used, which
should intuitively be looked upon as infinitely small numbers. Using this time domain,
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actions can execute infinitely close to each other: where in the process algebras of Section
8.2.4 we had that the process a(1)·b(1) could only execute an a at time 1, and then would
deadlock, we here have that the process a(1)·b(1) can execute an a at time 1, and then,
infinitely close afterward, execute a b, again at time 1. Such actions, that not only take
no time, but can also occupy the same point in the time domain, are called urgent actions
or immediate actions.

The authors end by giving translations from the process algebras Temporal CCS (see
Section 8.3.1), Wang’s Timed CCS (see Section 8.3.2), Chen’s Timed CCS (see Section
8.3.3), and the Algebra of Timed Processes (see Section 8.6.1) into their process algebras.

8.2.6 Real-Space Process Algebra (Baeten and Bergstra)

In BAETEN AND BERGSTRA [15, 18] we find a number of ACP-style timed process algebras
that use a dense time domain. The semantics of the process algebras is given using
Plotkin-style rules, leading to a strong-bisimulation model.

The process algebras defined by the authors are, again, closely related to the process
algebras discussed in Section 8.2.4. This time they extend their actions not only with
a temporal coordinate, but also with a spatial coordinate. So, in a manner of speaking,
all actions are space-time stamped with an element from the space-time domain. This
is done as follows: by a(x, t) they denote the action a at the moment t in time (where t
ranges over the non-negative real numbers: t ∈ R≥0) at the location x in space (where x
is a triple whose components range over the real numbers: x ∈ R3). Using this kind of
actions, it becomes possible to describe processes that represent objects moving through
space.

The authors introduce so-called multi-actions, denoted a1(x1) & . . . & an(xn) to de-
note the simultaneous execution (in time) of the actions a1 to an at mutually different
locations in space. Integration is added, in the same way as discussed in Section 8.2.4,
but only over the temporal coordinate, not over the spatial coordinate. Further features
introduced are a state operator, asynchronous communication, a priority operator, and
process creation.

In [15] the authors distinguish two different versions of their formalism: one for clas-
sical space-time (i.e. Newtonian), in which relativistic aspects play no rôle, and one for
relativistic space-time (i.e. Einsteinian), in which they do. In [18] they withdraw the rela-
tivistic variant, as they feel that the relevance of it is not fully established.

The authors end with a large number of example specifications, among which com-
munication via a static intermediate station, a version of the Concurrent Alternating Bit
Protocol, communication via a mobile intermediate station, several versions of the Posi-
tive Acknowledgment with Retransmission Protocol, data transmission via a mobile inter-
mediate station using an unreliable medium, a message handler, a faulty queue for asyn-
chronous message transfer, and user interaction with a computer and a printer.

8.2.7 Real-Time Process Algebra (Klusener)

In KLUSENER [117] we find a number of ACP-style timed process algebras that use a dense
time domain. The semantics of the process algebras is given using Plotkin-style rules,
leading to several different kinds of bisimulation models.
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The author takes the absolute-time process algebras of Section 8.2.4, and studies the
approach taken there in more detail. He restricts the format of the integration construct
to so-called prefix integration, and also places restrictions on the form of the integration
set. In this way, it becomes possible to give a complete axiomatization of the model,
which is theoretically impossible when unrestricted integration is used.

The author adds abstraction, and studies models based on branching bisimulation, de-
lay bisimulation, and weak bisimulation. He also adds guarded recursion, and uses this
to specify and verify a version of the Positive Acknowledgment with Retransmission Pro-
tocol. Finally, he introduces urgent actions, and studies several models of the resulting
process algebras.

The author ends by giving translations from the process algebras Temporal CCS (see
Section 8.3.1), Wang’s Timed CCS (see Section 8.3.2), Chen’s Timed CCS (see Section
8.3.3), the Timed Calculus (see Section 8.5.1), the Algebra of Timed Processes (see Section
8.6.1), and the Temporal Process Language (see Section 8.6.2) into his process algebras.

8.2.8 Algebra of Timed Frames (Bergstra, Fokkink, and Middelburg)

In BERGSTRA, FOKKINK, AND MIDDELBURG [42] we find an ACP-like algebraic theory that
use a discrete time domain. The semantics of the algebra follow by considering so-called
σ-bisimulation as an equivalence relation on so-called frames.

This formalism is different from the other ACP-like formalisms we have encountered
in the fact that its central elements are frames instead of processes. Here, frames are
structures that are built from states and transitions. A frame algebra is defined that in-
duces an algebraic equivalence between these frames. A special form of bisimulation,
called σ-bisimulation, is used to define an operational equivalence between frames.

An interesting detail is that although the authors adhere to the weak time factoriza-
tion principle, this is not reflected in the algebra. Instead, they use theirσ-bisimulation to
fold σ-transitions onto each other, thus enforcing weak time factorization. As a result,
the definition ofσ-bisimulation is more complicated than our bisimulation definition are.
By doing this, σ-transitions can be treated exactly like action transitions in the axioms,
which can therefore be simpler.

8.2.9 Timed µCRL (Groote)

In GROOTE [89] we find a description of the timed specification language Timed µCRL,
that is based on the (untimed) specification language µCRL (GROOTE AND PONSE [91]). The
time domain is left unspecified, and can be chosen at will, provided it is totally ordered
and contains a smallest element. An operational semantics is given using Plotkin-style
rules, leading to a strong-bisimulation model.

The author introduces the notations x↪t (“x at t”), to denote the action a at time t,
and x� y (“x before y”), to denote that part of the process x that starts before y must
perform an action. These are the only constructions involving time. Only absolute time
is used, on the grounds that Timed µCRL should be a small, clean language. All actions
are urgent : the process a↪1·b↪1 can execute an a at time 1, and immediately afterward
execute a b, still at time 1.

Relevant for this thesis is also the fact that the author gives an example specification
of Fischer’s Protocol for Mutual Exclusion (see Chapter 7). Due to the flexibility of his spec-



8.3 • CCS-Style Timed Process Algebras 235

ification language, he can leave open the time domain, the number of components, and
the execution durations of reading and writing from/to the shared variable. No attempt
at verification is made.

8.3 CCS-Style Timed Process Algebras

In this section, we look at a number of formalisms that find their common roots in the
Calculus of Communicating Systems (see MILNER [142]).

8.3.1 Temporal CCS (Moller and Tofts)

In MOLLER AND TOFTS [145] and MOLLER [144] we find a timed process algebra that uses a
discrete time domain. The semantics of the process algebra is given using Plotkin-style
rules, leading to a strong-bisimulation model.

The process algebra described, called Temporal Calculus of Communicating Systems,
or Temporal CCS for short, consists of the framework of CCS, with a few simple discrete-
time timing constructs added. The result is an elegant, simple process algebra that has
a lot in common with the discrete-time process algebras described in Chapters 3 to 5 of
this thesis.

The main construct to introduce time is the temporal prefix operator, denoted (t).P,
where t ∈ N+. This is the process that idles for t time-slices, and then continues as P,
which can be expressed in our notation as σtrel(P). Then, there is the delay operator,
denoted δ.P, the process that can idle for an arbitrary number (including zero) of time-
slices, and then continues as the part of P that does not idle. This corresponds exactly
to our process bPcω. An interesting point is that Temporal CCS has two choice opera-
tors: the weak choice, denoted P⊕Q, that obeys weak time factorization, and the strong
choice, denoted P +Q, that obeys strong time factorization. Finally, there is the nil pro-
cess, denoted 0, which can neither do an action, nor let time progress (this corresponds
to our undelayable deadlock δ).

In Temporal CCS, all actions are undelayable: the process a.P (in our notation: a·P)
must execute an a in the first time-slice. A delayable action can be coded as δ.a.P (in
our notation: ba·Pcω). As a shorthand for δ.a.P and δ.0, the notations a.P and 0 are
introduced, just like we introduced the delayable action a and the delayable deadlock δ.

The authors examine a subcalculus of Temporal CCS, called Loose Temporal CCS,
or `TCCS for short, in which all actions and deadlocks are made delayable. In `TCCS,
the weak choice and the strong choice collapse into the same operation, and there is no
longer need for the delay operator.

Finally, a parallel composition operator is defined and axiomatized. Since no auxiliary
operators, like for the example a left merge, are introduced, the axiomatization is both
complex and infinite.

8.3.2 Timed CCS (Wang)

In WANG [201, 202, 203] we find a timed process algebra that uses an unspecified time
domain, although in all examples the non-negative real numbers R≥0 are used. The se-
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mantics of the process algebra is given using Plotkin-style rules, leading to a strong-
bisimulation model and a weak-bisimulation model.

The process algebra described is called Timed Calculus of Communicating Systems,
or Wang’s Timed CCS for short. The process algebra features two main constructs to
introduce time. The first, called time event prefix, and denoted ε(d).P, is the process that
idles for an amount d > 0 of time, and then becomes P. The second, called generalized
action prefix, and denoted µ@t.P (where t is a time variable that may be free in P), is the
process that idles for an indeterminate amount d of time, executes the action µ, and then
becomes P[d/t] (i.e., P where d is substituted for t).

ACETO AND JEFFREY [6] give a complete axiomatization for open terms with finite-state
recursion in Wang’s Timed CCS, and in WANG [204], probabilities are introduced in the
context of Wang’s Timed CCS.

8.3.3 Timed CCS (Chen)

In CHEN [62] we find a timed process algebra that uses an unspecified time domain. An
operational semantics of the process algebra is given using Plotkin-style rules, leading
to a strong-bisimulation model and a weak-bisimulation model. Also a denotational se-
mantics is given, based on timed synchronization trees.

The process algebra described is called Timed Calculus of Communicating Systems,
or Chen’s Timed CCS for short. The main construct to introduce time is the action prefix
operator, denoted α(t)e′e .P, where e and e′ are time expressions, and t is a time variable
that may be free in P. The process α(t)e′e .P is the process that idles for an amount d of
time, where 0 ≤ e ≤ d ≤ e′ ≤ ∞, executes the action α, and then becomes P[d/t] (i.e., P
where d is substituted for t).

The author examines, among other things, decidability and completeness issues of
the process algebras that result when the initially unspecified time domain is instantiated
with a number of discrete and dense time domains.

8.3.4 Timed Probabilistic CCS (Hansson)

In HANSSON [92, 93] we find a timed process algebra that uses a discrete time domain. The
semantics of the process algebra is given using Plotkin-style rules, leading to a strong-
bisimulation model.

The process algebra described is called Timed Probabilistic Calculus of Communicat-
ing Systems, or TPCCS for short. The main construct to introduce time is the binary time-
out operator, denotedN.P (whereN and P are TPCCS processes), which can be expressed
as νrel(N) + σrel(P) in our notation. Note that this is the same operator as the bNc(P)
operator of ATP (see Section 8.6.1).

The interesting feature of TPCCS is the presence of probabilities: next to a non-
deterministic choice, there is also a probabilistic choice in which every summand has a
weight associated with it, that represents the probability of that summand being chosen.

In his dissertation [93], the author also introduces a temporal probabilistic logic,
which is shown to posses an expressive power that is equivalent to bisimulation. Finally,
a large number of examples is specified and verified in extensive detail.
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8.3.5 Linear Timed CCS (Jeffrey)

In JEFFREY [111] we find a timed process algebra that uses an arbitrary totally ordered
monoid as its time domain. The semantics of the process algebra is given using Plotkin-
style rules, leading to a strong-bisimulation model.

The process algebra defined, called Linear Timed Calculus of Communicating Systems,
or LTCCS for short, is based on an abstract time domain, for which any totally ordered
monoid can be substituted. As the author shows, many (timed) process algebras from
the literature can be mimicked by LTCCS, by properly instantiating the time domain, and
building the appropriate operators from the the primitives of LTCCS. Examples include
TPL (see Section 8.6.2), by taking (N,+,0) as the monoid, Wang’s Timed CCS (see Section
8.3.2), by taking (R≥0,+,0) as the monoid, and untimed CCS, by taking ({0} ,+,0) as the
monoid.

The main construct to introduce time is the εt:P operator (where t is an element of
the time domain, and P an LTCCS process), which idles for an amount t of time, and then
behaves as P.

8.3.6 CCS with Interval Time (Daniels)

In DANIELS [67] we find a timed process algebra that uses a dense time domain. The
semantics of the process algebra is given using Plotkin-style rules, leading to a strong-
bisimulation model, a timed-weak bisimulation model, and a weak bisimulation model.

The process algebra defined, called Calculus of Communicating Systems with Interval
Time, or CCSiT for short, uses the real numbersR as its time domain. The main construct
to introduce time is the prefix operator, denoted µ@i.P (where µ is an action, i an open
or closed interval from R, and P a CCSiT process), which is the process that can execute
a µ at any moment t ∈ i, and then behaves as P.

Note the similarity between theµ@i.P operator of CCSiT and the more general integra-
tion operator of Real-Time Process Algebra (see Section 8.2.4). In terms of this integration
operator, µ@i.P can be expressed as

(∫
t∈i µ[t]

)·P.

8.3.7 Constraint-Oriented Real-Time Process Calculus (Fidge)

In FIDGE [78] we find a timed process algebra that can either use a discrete or a dense time
domain. The semantics of the process algebra is given using Plotkin-style rules, leading
to a bisimulation model.

The process algebra defined, called Constraint-Oriented Real-Time Process Calculus,
is based on untimed CCS, using time extensions in the style of TIC (see Section 8.5.1).
As the time domain, either the natural numbersN, or the non-negative real numbersR≥0

can be used. The main constructs to introduce time are the prefix operator, denotedαr.E
(where α is an action, r an element of the time domain, and E a process), which is the
process that idles for an amount r of time, executes an action α, and then behaves as E,
and a generalization of this operator, denoted αR.E (where α is an action, R a subset of
the time domain, and E a process), which is the process that idles for a non-deterministic
amount r ∈ R of time, executes an action α, and then behaves as E.
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8.4 CSP-Style Timed Process Algebras

In this section, we look at a number of formalisms that find their common roots in Com-
municating Sequential Processes (see HOARE [98]).

8.4.1 Timed CSP (Reed and Roscoe)

In REED AND ROSCOE [175, 176] we find a timed process algebra that uses a dense time
domain. A denotational semantics of the process algebra is given, leading to the timed
stability model.

The process algebra described, called Timed Communicating Sequential Processes, or
Timed CSP for short, uses the non-negative real numbers R≥0 as its time domain. The
main construct to introduce time is denoted WAIT t (where t ∈ R≥0), the process that
idles for an amount t of time, and then terminates.

Over the years, Timed CSP has undergone a lot of changes. For a comprehensive intro-
duction into Timed CSP, and an overview of its history, see REED, ROSCOE, AND SCHNEIDER

[177], DAVIES, et al. [70], or DAVIES AND SCHNEIDER [73]. Here, we suffice by mentioning
a number of relevant papers.

First, in the dissertation of JONES [113] we find an early attempt at providing CSP with
a timed model. In HUIZING, GERTH, AND DE ROEVER [100] and GERTH AND BOUCHER [82]
a denotational semantics of Timed CSP is developed, leading to a timed failures model.
Then, in the dissertation of REED [174], a variety of semantic models for Timed CSP is
given, and in the dissertations of SCHNEIDER [185] and DAVIES [74], we find proof theory
for Timed CSP. An operational semantics of Timed CSP is given in SCHNEIDER [186], and
LOWE [133, 134] adds probabilities and priorities to Timed CSP. A large number of case
studies can be found in DAVIES, et al. [70], and DAVIES AND SCHNEIDER [72] show how to
verify the Alternating Bit Protocol using Timed CSP.

8.4.2 Discrete Timed CSP (Jeffrey)

In JEFFREY [109] we find a timed process algebra that uses a discrete time domain. A
denotational semantics of the process algebra is given, using timed traces, timed refusals,
timed failures, and metric spaces.

The process algebra described is called Discrete Timed Communicating Sequential
Processes, or DCSP for short. There is no construct to introduce time explicitly. Instead,
time is implicitly introduced by the rule that if the environment refuses to cooperate in
any action that is offered to it, then the remaining part of the process moves on to the
next time-slice. By this rule, the process that offers no action at all and then continues as
P, is equivalent to P in the next time-slice. Using this coding trick, the author recursively
defines the WAIT t construct of Timed CSP (see Section 8.4.1), such that for any t ∈ N,
the process WAIT t is the process that idles for t time-slices, and then terminates.

8.5 LOTOS-Style Timed Process Algebras

In this section, we look at a number of formalisms that find their common roots in LOTOS
(see ISO [101]).
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8.5.1 Timed Calculus (Quemada, de Frutos, and Azcorra)

In QUEMADA AND FERNANDEZ [171], QUEMADA, AZCORRA, AND DE FRUTOS [170], and QUE-
MADA, DE FRUTOS, AND AZCORRA [172] we find a process algebra that uses a discrete time
domain. The semantics of the process algebra is given using Plotkin-style rules, leading
to a strong-bisimulation model and a weak-bisimulation model.

The process algebra described is called TImed Calculus, or TIC for short. The main
constructs to introduce time are the action prefix operator, denoted at;B (where t ∈ N,
and B is a TIC process), which is the process that executes an a in the (t+1)th time-slice,
and then behaves as B, and an extension of it, the timed choice operator, denoted aT;B
(where T is an interval from N, and B is a TIC process), which is the process that for any
t ∈ T can execute an a in the (t+ 1)th time-slice, and then behave as B.

In [172] the authors give two expansion theorems, consider internal actions, and give
two examples: a stop and wait protocol and a railroad crossing.

8.5.2 U-LOTOS / T-LOTOS (Bolognesi and Lucidi)

In BOLOGNESI AND LUCIDI [50, 51] we find two process algebras that use a discrete time
domain. The semantics of the process algebras is given using Plotkin-style rules.

The two process algebras described, called U-LOTOS and T-LOTOS , are inspired by
ideas from Temporal CCS (see Section 8.3.1). The first one, U-LOTOS, has two main con-
structs to introduce time: the time prefix operator, denoted (t).B (where t ∈ N, and B is
a U-LOTOS process), which is the process that idles for t time-slices, and then behaves
as B, and the urgency of actions operator, denoted asap G in B (where G is a set of gates,
and B is a U-LOTOS process), which is the process that behaves like B, except that as soon
as an action at some gate in the set G is ready for execution, it is immediately executed.
The second process algebra, T-LOTOS, generalizes the urgency of actions operator to a
timer operator, denoted timer a(t1, t2) in B (where t1, t2 ∈ N, and B is a T-LOTOS process),
which is the process that behaves like B, except that as soon as the action a is enabled,
it must be executed in the closed interval [t1, t2] of future time-slices. So, the U-LOTOS
process asap a in B is equivalent to the T-LOTOS process timer a(0,0) in B.

8.5.3 TLOTOS (Leduc)

In LEDUC [128] we find a process algebra that uses a discrete time domain. The semantics
of the process algebra is given using Plotkin-style rules, leading to a strong-bisimulation
model.

The process algebra described, called TLOTOS , is inspired by the Algebra of Timed
Processes (see Section 8.6.1). Let P and Q be TLOTOS processes, and d ∈ N+, then the
main constructs to introduce time are the start delay operator, denoted bPcd(Q), the ex-
ecution delay operator, denoted dPed(Q), and the unbounded start delay, denoted bPcω.
For each of these three operators, the semantics is identical to that of the corresponding
operator in ATP (see Section 8.6.1 for a full description).
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8.5.4 Timed LOTOS / ET-LOTOS (Leduc and Léonard)

In LEDUC AND LÉONARD [129] and LÉONARD AND LEDUC [131] we find two process algebras
that use an unspecified time domain. The semantics of the process algebras is given us-
ing Plotkin-style rules.

The process algebra described in [129], is called Timed LOTOS . The main construct
to introduce time is the delay operator, denoted ∆[d1,d2]P (where d1 and d2 are elements
of the time domain, and P is a Timed LOTOS process), which is the process that idles for
a non-deterministic amount t ∈ [d1, d2] of time, and then behaves as P. On the basis of
this operator, a number of other timing operators are introduced.

In [131], the authors extend Timed LOTOS with several new features, leading to a new
process algebra called Enhanced Timed LOTOS, or ET-LOTOS for short. The main new
construct is the extended action prefix operator, denoted g@t {d}; A (where g is an action,
t is a variable that may be free in A, d is an element from the time domain, and A is an
ET-LOTOS process), which is the process that offers an action g for a period d of time; if
in this period the g is executed after an amount t′ of time, then after that, the process
behaves as A[t′/t] (i.e., A where t′ is substituted for t), or else, the process becomes a
delayable deadlock. The authors end by giving a case study of the use of ET-LOTOS.

Finally, in BRYANS, DAVIES, AND SCHNEIDER [57], a denotational semantics for ET-
LOTOS is developed.

8.5.5 TE-LOTOS (Davies, Bryans, and Schneider)

In DAVIES, BRYANS, AND SCHNEIDER [71] we find a timed process algebra that uses a dense
time domain. A denotational semantics of the process algebra is given, leading to the
timed observations model.

The process algebra described is called Timed Enhanced LOTOS, or TE-LOTOS for
short. The main constructs to introduce time are the action prefix operator, denoted
a{t in d−..d+} ; P (where a is an action, d−, d+ ∈ R≥0, and P is a TE-LOTOS process), which
is the process that can execute an action a after any amount t ∈ [d−, d+] of idling, and
then behave as P, or else becomes a delayable deadlock, and the delay operator, denoted
Wait(d) ; P (where d ∈ R≥0, and P is a TE-LOTOS process), which is the process that idles
for an amount d of time, and after that behaves as P.

8.5.6 LOTOS-T (Miguel, Fernández, and Vidaller)

In MIGUEL, FERNÁNDEZ, AND VIDALLER [140] we find a process algebra that uses an un-
specified time domain. The semantics of the process algebra is given using Plotkin-style
rules, leading to a strong-bisimulation model and a weak-bisimulation model.

The process algebra described is called LOTOS-T . The main constructs to introduce
time are the timed action prefix, denoted a{t}; B (where a is an action, t is an element
from the time domain, and B is a LOTOS-T process), which is the process that idles for
an amount t of time, and then can execute an action a, or else becomes a delayable dead-
lock, and the timed successful termination, denoted exit{t} (where t is an element from
the time domain), which is the process that idles for an amount t of time, and then can
successfully terminate, or else becomes a delayable deadlock.
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8.5.7 LOTOS/T (Nakata, Higashino, and Taniguchi)

In NAKATA, HIGASHINO, AND TANIGUCHI [151] we find a process algebra that uses a dis-
crete time domain. The semantics of the process algebra is given using Plotkin-style
rules, leading to a strong-bisimulation model and a weak-bisimulation model.

The process algebra described is called LOTOS/T. The main construct to introduce
time is the time-constrained action prefix, denoted a[P(t, x)]; E, where a is an action, t
is a special variable that denotes the absolute time, x denotes the vector of all variables
except t, P(t, x) is a predicate over a certain subset of the Presburger Arithmetic, and E
is a LOTOS/T process. The meaning of this construct is a process that can under cer-
tain conditions execute an action a at a certain moment in time, and then behaves as E.
For a full definition of the predicates used, and their semantics, see [151]. Here, we only
repeat a simple example given by the authors, in order to sketch the flavor of the formal-
ism. Consider the following process, in which t is the special variable that denotes the
absolute time:

a[2 ≤ t ≤ 3∧ x0 = t]; b[t = x0 + 3]; stop

This is the process that executes the action a between time 2 and 3, and then executes
the action b three time-units later. The assignment x0 = t is used to record the time
of execution of a, and then later on x0 is referred to in the second predicate in order to
specify that the b should execute 3 time-units after the a.

8.6 Other Timed Process Algebras

In this section, we look at a number of formalisms that cannot be easily classified as being
timed extensions of existing untimed formalisms.

8.6.1 Algebra of Timed Processes (Nicollin and Sifakis)

In NICOLLIN AND SIFAKIS [154] we find a timed process algebra that uses a discrete time
domain. The semantics of the process algebra is given using Plotkin-style rules, leading
to a strong-bisimulation model.

The process algebra described, called Algebra of Timed Processes, or ATP for short,
is closely related to ACP: ATP borrows several features from untimed ACP, and discrete-
time ACP, in turn, borrows from ATP. Since ATP is so closely related to the process alge-
bras described in this thesis, we will examine it in some detail.

We begin with the signature. ATP has the following constants and operators (let P
and Q be ATP processes, α an action, and X a free variable):

• The deadlock constant, denoted 0, which is our δ.

• A countable set of actions, denotedA. There is one special action, denoted χ, that
represents the progress of time. The set of asynchronous actions, i.e. A − {χ}, is
denoted byAα. A single action, by itself, does not denote a process in ATP. In our
terminology,A would be called the alphabet instead of the set of actions (see also
Remark 2.3.1.4 on page 7).
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• The prefixing operator, denoted αP, for α ∈Aα, which can be expressed as α·P in
our notation. In our terminology, all actions in ATP are undelayable. Like, e.g., CCS,
ATP has no general sequential composition, but only action prefix. As the deadlock,
0, functions as a starting point to build processes, all processes end in deadlock. So,
no distinction is made between successful and unsuccessful termination, as is done
in ACP.

• The alternative choice operator, denoted P⊕Q, which is almost like our P+Q, except
that ATP uses strong time factorization.

• The unit-delay operator, denoted bPc(Q), which can be expressed as νrel(P) +
σrel(Q) in our notation. ATP has no operator corresponding to our σrel(x), how-
ever, this process can be expressed as b0c(x) in ATP. Due to the use of strong time
factorization, ATP can express our process νrel(x) as 0 ⊕ x. Note that 0 is not a
proper zero element for the alternative choice operator in ATP.

• The recursion operator, denoted recX·P. As we have no recursion, we will not look
at ATP recursion.

• The parallel composition operator, denoted P ‖ Q, which is the ACP merge operator.

• The left merge operator, denoted P ‖ Q, which is the ACP left merge operator.

• The communication merge operator, denoted P|Q, which is the ACP communication
merge operator.

• The encapsulation operator, denoted ∂H(P), which is the ACP encapsulation oper-
ator.

In connection with Chapter 5, it is interesting to see how the merge operators are ax-
iomatized. In Table 8.1 the ATP axioms for the merge and left merge operators are shown
(where P, Q, R, P1, P2, Q1, and Q2 are ATP processes, and “≡” is used instead of “=”).
Then, in Table 8.2 on the next page, the same axioms interpreted in ACP notation are
shown, where the alternative composition should be viewed as a strong time-factorization
alternative composition.

P ‖ Q ≡ P ‖ Q ⊕Q ‖ P ⊕ P |Q [ ‖ 1]

(P⊕Q) ‖ R ≡ P ‖ R⊕Q ‖ R [ ‖ 1]

0 ‖ P ≡ 0 [ ‖ 2]

αP ‖ Q ≡ α(P ‖ Q) [ ‖ 3]

bPc(Q) ‖ (0⊕R) ≡ P ‖ (0⊕R) [ ‖ 4]

bP1c(Q1) ‖ bP2c(Q2) ≡ bP1 ‖ P2c(Q1 ‖ Q2) [ ‖ 5]

Table 8.1: Axioms for the ATP merge and left merge operators.
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x ‖ y = x ‖ y + y ‖ x+ x | y ATPCM1

(x+ y) ‖ z = x ‖ z+ y ‖ z ATPLM1

δ ‖ x = δ ATPLM2

a·x ‖ y = a·(x ‖ y) ATPLM3

(ν(x)+σ(y)) ‖ ν(z) = x ‖ ν(z) ATPLM4

(ν(x1)+σ(y1)) ‖ (ν(x2)+σ(y2)) = ν(x1 ‖ x2)+σ(y1 ‖ y2) ATPLM5

Table 8.2: Axioms for the ATP merge and left merge operators
(interpreted in ACP notation, assuming strong time
factorization).

When we study these axioms more closely, we see that Axioms ATPCM1, ATPLM1,
and ATPLM3 are identical to our Axioms DRTCM1, DRTM4, and DRTM3 respectively, and
furthermore, that Axiom ATPLM2 is an instantiation of our Axiom DRTM2.

The remaining axioms, Axioms ATPLM4 and ATPLM5, bear a conceptual correspon-
dence to our Axioms DRTM5 and Axioms DRTM6 (see Table 5.2 on page 106), which can
be viewed as follows. Both axiomatizations are based on splitting the right argument of
the left merge into a νrel-part and a σrel-part. This leads in both axiomatizations to the
distinction of two cases: the case in which the right argument does not have a σrel-part
(their Axiom ATPLM4, our Axiom DRTM5), and the case in which the argument does have
a σrel-part (their Axiom ATPLM5, our Axiom DRTM6). The difference between their ax-
ioms and our axioms is in the left argument of the left merge. They split this argument
also into a νrel-part and a σrel-part, while we assume it has only a σrel-part, and leave the
handling of a possible νrel-part to a distributivity axiom, namely Axiom DRTCM4, in the
assurance that νrel is an operator that can be eliminated on basic terms. The motivation
for these choices is clear: in ATP, processes are by nature split into νrel/σrel parts, due to
the use of the bPc(Q) operator to construct processes that can do a time step; in ACP, we
have a σrel(x) operator to construct such processes, so we can have somewhat simpler
axioms.

Note that Axiom ATPLM5 is not a valid equality in our process algebras, say in
PA−drt–ID. This is due to the use of strong time factorization in ATP, and weak time factor-
ization in ACP. Examine the following two examples. In strong time factorization, using
Axiom ATPLM5, we have this equality:

(ν(a)+σ(b)) ‖ (ν(c)+σ(d)) = a·c+σ(b·d)

whereas in weak time factorization we have the following equality:

(ν(a)+σ(b)) ‖ (ν(c)+σ(d)) = a·(c+σ(d))+σ(b·d)

As can be seen, in weak time factorization the subterm σ(d) becomes enabled after the
a has been executed, while in strong time factorization theσ(d) disappears, because the
subterm c, which is in a choice context with σ(d), cannot do a time step.
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Next to the ATP operators already discussed, the authors also introduce a number of
auxiliary operators, called delay operators, all of which can be eliminated. Most of these
operators are parameterized by a number d ∈ N+, where d represents the number of
time-slices before something special happens. We describe them shortly (let P and Q be
ATP processes):

• The timeout at d operator, denoted P.dQ, is the process that waits for P to execute
an action in any of the first d time-slices, and then continues as P, or else becomes
Q in the (d+ 1)th time-slice.

• The start-delay within d operator, denoted bPcd(Q), is the process that can start
executing P in any of the first d time-slices, or else becomesQ in the (d+1)th time-
slice. The difference with the previous operator is that the start-delay operator can
delay the execution of P, even if P cannot delay its own execution, while the timeout
operator cannot delay the execution of P if P cannot delay its own execution. For
d = 1, the start-delay operator is identical to the unit-delay operator: bPc1(Q) =
bPc(Q).

• The unbounded start-delay operator, denoted bPcω, is the process that can delay
the execution of the first action of P for an arbitrary number of time-slices. This
operator is like our bxcω operator, but differs from it at a crucial point: while in
ACP we have that bσrel(x)cω= δ, in ATP we have that bσrel(x)cω= σrel(bxcω). The
ATP unbounded start-delay operator is not identical to the iterated delay σ∗rel(x)
of ACP (see Remark 3.2.4.4 on page 55) either: for that operator, we have that
σ∗rel(σrel(x)) = σrel(σ∗rel(x+σrel(x))).

• The execution delay within d operator, denoted dPed(Q), is the process that behaves
as P for the first d time-slices, and then continues as Q.

The authors end with a comparison of the Algebra of Timed Process with the process
algebras ACP with Real-Time Steps (see Section 8.2.1), the Real-Time Process Algebra (see
Section 8.2.4), Temporal CCS (see Section 8.3.1), Wang’s Timed CCS (see Section 8.3.2),
Timed CSP (see Section 8.4.1), and the Temporal Process Language (see Section 8.6.2).

8.6.2 Temporal Process Language (Hennessy and Regan)

In HENNESSY AND REGAN [95, 96] we find a timed process algebra that uses a discrete time
domain. An operational semantics of the process algebra using Plotkin-style rules, and
a semantic theory based on testing are given.

The process algebra described, called Temporal Process Language, or TPL for short,
is related to ATP (see Section 8.6.1), the main difference being, in our terminology, that
in TPL all actions are delayable, whereas in ATP all actions are undelayable. The elemen-
tary timing construct of TPL in [95] is action prefix with a special action σ denoting time:
σ.t, the process that waits for one time-slice, and then becomes t (it is from this notation
that our σrel(x) derives). Later, in [96], the bpc(q) operator of ATP was added, in order
to facilitate the axiomatization of the parallel composition. The σ.t operator remained,
but is now little more than syntactic sugar: σ.t can be expressed by bnilc(t) (where nil
denotes a delayable deadlock) in the new algebra. Like in ATP, the choice operator of
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TPL uses strong time factorization. Another important concept used in TPL, is the no-
tion of maximal progress, which here means that processes that can communicate, must
communicate. So, if there is still communication possible, no clock ticks can occur.

The authors end with a specification and verification of a simple protocol, the Security
Costs Protocol.

8.6.3 Interval Process Algebra (Murphy)

In MURPHY [149, 150] and ACETO AND MURPHY [7, 8] we find a number of timed process
algebras that use a dense time domain.

The process algebras described all derive from the Interval Process Algebra, or IPA for
short, that was described in the dissertation of MURPHY [150]. IPA is a non-interleaving
process algebra that has roots in both (untimed) CCS and Timed CSP. An interesting fea-
ture is that, unlike in most other timed process algebras we have encountered, actions in
IPA have a non-zero duration associated with them. A function ∆, that is a parameter of
the theory, associates with all actions a number t ∈ R, t > 0, that signifies the duration
of that action. Thus, the execution of a certain action at a certain moment in time marks
the beginning of an interval in time during which that action is being executed.

In [150], we find an axiomatic semantics, a denotational semantics, and an operational
semantics. In [149], a slightly different operational semantics is given. In [7, 8], a subset
of IPA is given, called cIPA, together with an operational semantics using Plotkin-style
rules, and a corresponding bisimulation model.

8.6.4 Calculus of Timed Refinement (C̆erāns)

In C̆ERĀNS [60] we find a timed process algebra that uses a dense time domain. An oper-
ational semantics and a specification refinement semantics are given.

The author defines a process algebra called Calculus of Timed Refinement, or CTR for
short, that is related to CCS. As the time domain R≥0, the set of non-negative real num-
bers, is used. The main construct to introduce time is the time interval prefix, denoted
[a,b].P, with 0 ≤ a ≤ b ≤ ∞, which is the process that idles for an amount d ∈ [a,b] of
time, and then turns into the process P.

8.6.5 Algebra of Communicating Shared Resources (Brémond-Grégoire et al.)

In BRÉMOND-GRÉGOIRE, LEE, AND GERBER [54] we find a timed process algebra that uses
a dense time domain. The semantics of the process algebra is given using Plotkin-style
rules, leading to a strong-bisimulation model.

The authors define a process algebra called Algebra of Communicating Shared Re-
sources, or ACSR for short. As time domain, the positive real numbers are used. The
authors distinguish two types of actions: those that consume time, and those which are
instantaneous. The first kind represents the progress of time, the second kind provides
a mechanism for synchronization and communication between actions. The main con-
struct to introduce time is denoted (t,A) : P, which is the process that executes the action
A for an amount t of time, and then proceeds as P.
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8.6.6 Abstract-Time Process Algebra (Jeffrey)

In JEFFREY [108, 112] we find a timed process algebra that uses an abstract, partially or-
dered time domain. An operational semantics and a denotational semantics are given.

The author defines a process algebra called Abstract-time Process Algebra, or APA for
short, that has roots in both CCS and CSP. The notion of a timed observation is defined,
and subsequently used to introduce an abstract notion of timing in the process algebra.

8.6.7 Process Algebra with Multiple Clocks (Andersen and Mendler)

In ANDERSEN AND MENDLER [10] we find a process algebra that uses a discrete time do-
main. The semantics of the process algebra is given using Plotkin-style rules, leading to
a weak-bisimulation model.

The authors define a process algebra called Process Algebra with Multiple Clocks, or
PMC for short, that is related to ATP (see Section 8.6.1). Instead of using a fixed, measur-
able, and global notion of time, as do most of the timed process algebras described in
this chapter, PMC uses the notion of uninterpreted multiple clocks, that enforce broad-
cast communication between processes.

8.6.8 Calculus for Synchrony and Asynchrony (Cleaveland et al.)

In CLEAVELAND, LÜTTGEN, AND MENDLER [64] we find a process algebra that uses a discrete
time domain. The semantics of the process algebra is given using Plotkin-style rules,
leading to a strong-bisimulation model and a weak-bisimulation model.

The authors define a process algebra called Calculus for Synchrony and Asynchrony,
or CSA for short, that is related to both TPL (see Section 8.6.1), and PMC (see Section
8.6.7). CSA uses multiple clocks, as does PMC, and combines it with the maximal progress
assumption of TPL, but keeps the maximal progress assumption local to each clock. This
locality restriction is called clock scoping.

8.6.9 Real Time Agents (Cardelli)

In CARDELLI [59] we find a process algebra that uses a dense time domain. An operational
semantics of the process algebra is given, leading to a strong-bisimulation model.

Actions in this process algebra have a duration, like they do in IPA (see Section 8.6.3).
The main construct used to introduce time is denoted a[t], which is the process that
performs the action a for an amount t of time. A related construct is denoted a(t), which
is the process that performs the action a for at most an amount t of time.

On a historical note: [59] appears to be one of the very first papers ever published in
the field of timed process algebras.

8.6.10 Discrete-Time TOOLBUS (Bergstra and Klint)

In BERGSTRA AND KLINT [43, 44] we find a description of the Discrete-Time TOOLBUS sys-
tem. This is not a process algebra, but rather a piece of software that is based on the
timestamped discrete-time process algebras of BAETEN AND BERGSTRA [25] (see Section
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8.2.3) which in turn are related to the process algebras described in Chapters 3 to 7 of
this thesis. As such, the Discrete-Time TOOLBUS system has our interest.

The Discrete-Time TOOLBUS system was designed to facilitate the interconnection of
a number of software components (called tools) in a modular, flexible, and dynamic way.
Each of these tools may have a different user interface, be developed using a different
programming languages, and run on a different computing platform. Using the TOOLBUS

system, such a heterogeneous whole of tools can be integrated into one distributed sys-
tem, in which all tools are required to communicate with each other through the TOOLBUS

system. The specifics of these communications are implemented by a so-called T script,
which can be viewed as an executable discrete-time process algebra specification. We will
now look at this discrete-time process algebra; for more information about the TOOLBUS

system in general, we refer to [43, 44].
Like the timestamped process algebras of Section 8.2.3, the process algebra used in

the TOOLBUS system uses the natural numbers, N, to enumerate an infinite number of
time-slices. Timestamped actions are denoted a∨(n), which should be interpreted as the
absolute-time process that can execute an a in the (n+ 1)th time-slice, or, alternatively,
idle forever. In the terminology of Section 8.2.3, we have:

a∨(n) = a(n)+ δ

where δ denotes the delayable deadlock process. Using time-spectrum abstraction, the
relative time counterpart of a∨(n) is introduced: the process a∨[n], which should be
interpreted as the relative-time process that can execute an a in the (n+ 1)th time-slice
after it is initialized, or, alternatively, idle forever. Absolute timing and relative timing
may be freely mixed; the process algebra supports parametric timing.

Among the operators of the process algebra we find, next to the usual ACP operators,
a renaming operator, a process creation operator, a state operator, an iteration operator,
and a condition operator.

The authors define the ASCII syntax of T scripts, which are based on their process
algebra, and extend T scripts with a number of communication primitives and facilities
to handle data. Finally, two examples are given: a calculator, and a distributed auction.

8.7 Further Reading

A good starting point for more information about concurrency and process algebras, in
both untimed and timed form, can be found in the proceedings of the International Con-
ference on Concurrency Theory, or CONCUR for short, which is being held annually since
1990. As of this writing, the proceedings of 1990–1997 have appeared: [32, 33, 46, 65,
114, 130, 139, 146].

In NICOLLIN AND SIFAKIS [153] an overview and synthesis of timed process algebras
is given, which includes an overview of useful properties and features in timed process
algebras, and a section on “How to cook your own timed process algebra”.

Other interesting papers are JEFFREY [110], which contains a general discussion about
timed process algebras; GODSKESEN AND LARSEN [85], which examines expansion theo-
rems for timed process algebras; BRIM [55], which shows how to add modal logic to a
timed process algebra; BOLOGNESI, LUCIDI, AND TRIGILA [52], which contains a general
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discussion on timed extensions of LOTOS; and BUN [58], in which a comparison is made
between the ACP and ATP approaches to timed process algebra.

Most of the papers mentioned in this chapter have a section in which related work is
discussed. One of the most extensive discussions of these can be found in the disserta-
tion of HANSSON [93].



9
Conclusions

9.1 Discrete-Time Process Algebra

We have argued that untimed process algebra is not suitable for the description and anal-
ysis of a certain class of protocols, namely those protocols whose correctness critically
depends on timing aspects, and those protocols whose timing aspects we want to study
quantitatively.
See Section 3.1

We have furthermore argued that it is a permissible simplification to look at time as
if it were subdivided in a countably infinite number of time-slices, i.e., as if time pro-
ceeded discretely. Although this is less general than using a dense time domain, it leads
to considerable simplification of the theory.
See Section 3.1

We have defined a number of discrete-time basic process algebras with relative timing.
These process algebras are minor modifications of process algebras that were already
known from the literature. We have modified them to bring them into a uniform format,
to make sure that the definitions we use are prudently chosen with respect to proving
soundness and completeness, and to make them sound and complete in the first place.
See Section 3.2

9.2 Soundness and Completeness

We have proven soundness and completeness properties for a number of discrete-time
process algebras with relative timing, containing features such as immediate deadlock,
unbounded start delay, delayable actions, free merge, merge, communication merge, and
encapsulation.
See Chapters 4 and 5

In order to prove soundness and completeness, we have used several distinct tech-
niques, ranging from simple induction proofs to term-rewriting analysis. Furthermore,
we have shown how to extend given soundness and completeness results for a certain
process algebra to another process algebra, using a ground equivalence technique if

249
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the signatures of the old and the new process algebra are the same, or using Verhoef’s
method if the signature of the new process algebra is larger than that of the old one.
See Section 4.2

On the negative side: the methods we have used for proving soundness and complete-
ness do not seem to extend to abstract process algebras.
See Section 5.5

While proving soundness and completeness, we found that it is very easy to make tiny
mistakes when constructing an axiomatization, and that these mistakes only become ap-
parent when soundness and completeness proofs are written out, ad nauseam, in all their
entirety. This, combined with the fact that the proofs in themselves are not very com-
plex but merely long and tedious, brings us to the conclusion that proofs of this kind are
excellent candidates for automated proof checking or computer aided proof generation.
See Section 5.5

All the soundness and completeness proofs we have given are constructive. There-
fore, these proofs can be viewed as algorithms. Using these algorithms, it should be not
too difficult to construct a tool that can automatically decide whether two closed process
terms are derivably equal in a given process algebra, and if so, provide a derivation.
See Chapters 4 and 5

Doing soundness and completeness proofs provides us with a clear insight into the
exact inner workings of an axiomatization. Using this insight, we were able to replace
conditional axioms by corresponding unconditional axioms. The recipe was always the
same: identify the places in the completeness proof where the conditional axiom is used
(which places turn out be very localized), see how the conditional axiom is instantiated
there, and add the corresponding equality as an unconditional axiom. Using this recipe,
we were able to give unconditional variants of all conditional axiomatizations that occur
in this thesis.
See Sections 4.3.5, 5.3.2, 5.3.4, and 5.3.5

9.3 Axioms for Concurrency

We have given two distinct ways to introduce concurrency in the setting of discrete-time
process algebra with relative timing, and proved the resulting process algebras sound
and complete.
See Chapter 5

The first way to introduce concurrency, using the so-called ν/σ-axiomatization style,
proved very convenient from a practical viewpoint, as it makes calculations very prac-
tical. From a theoretical viewpoint, however, this axiomatization style is more trouble-
some, as it prevents the use of term rewriting techniques, and is also incompatible with
the empty process. We conclude that the ν/σ-axiomatization style has its uses, but is
not very elegant.
See Sections 5.2.1 and 5.2.3

The second way to introduce concurrency, using a more classic axiomatization style
that is based on inductive definitions of closed terms, has less theoretical problems. Due
to the fact that it is based om inductive definitions, it lends itself well to proving proper-
ties by means of induction. Also, it appears to lend itself better to being extended with
additional features. However, the classic axiomatization style is less intuitive, and it is
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not convenient to perform calculations in. We conclude this axiomatization style is more
elegant, but not quite as elegant as we would want it to be.
See Sections 5.2.2 and 5.2.4

We have supplemented our discrete-time concurrent process algebras with delayable
actions. To do this, we initially needed conditional axiomatizations, but ultimately we
were able to derive unconditional variants of all these axiomatizations.
See Section 5.3

9.4 The Empty Process

We have successfully introduced the empty process in the context of discrete-time pro-
cess algebra with relative timing. The axioms we have given lead to a sound and complete
axiomatization of our bisimulation model. For closed terms, the axioms of standard con-
currency are derivable.
See Chapter 6

In building our axiomatization, we found that there is not much room for choice:
the constraints of the unit-element property with respect to sequential composition and
merge, associativity of the merge, time determinism, and taking an existing concrete pro-
cess algebra as a basis, almost completely determine which course to take.
See Section 6.3

As the behavior of the empty process is not always in accordance with one’s first intu-
ition one should be very careful when verifying protocols, to make sure that the protocol
that is coded in process algebra, is indeed the same as the one that is supposed to be un-
der study. Hence, the usefulness of the empty process with respect to real-life protocol
verification remains to be determined.
See Section 6.3.2

We found that the empty process cannot straightforwardly be combined with the im-
mediate deadlock process. This is rather worrisome, as some applications require both
features simultaneously.
See Section 6.3.4

9.5 Fischer’s Protocol

We have successfully verified a simple instance of Fischer’s Protocol for Mutual Exclu-
sion. The first part of the verification was algebraic, but the second part involved model-
dependent reasoning.
See Section 7.5

We conclude that the use of bisimulation semantics in discrete-time process algebra
places a burden on verifications, as bisimulation semantics preserve very many moments
of choice, and therefore lead to long and error-prone calculations. It seems valid to doubt
whether this is always necessary. Maybe a less discriminatory semantics should be de-
veloped for discrete-time process algebra.
See Section 7.6

We conclude that a pure algebraic approach is sometimes not very well suited to ex-
press the properties we want to prove of a certain protocol. In the case of Fischer’s Pro-
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tocol we run into serious problems when we want to formally express our proof require-
ments. As a result, the proof requirements remain too informal. Maybe discrete-time
process algebra should be augmented with a temporal-logic oriented formalism to spec-
ify proof requirements.
See Section 7.2.2

We conclude that the process-algebraic verification of real-life protocols requires a
large calculational effort. Therefore, we think it essential that computer support be de-
veloped, so that the large amount of calculations necessary can be more easily handled.
This will be beneficial to both the size of the problems that can be handled, and to the
accuracy with which the verification is performed.
See Section 7.6

9.6 Future Research

As can be observed from the conclusions above, and from the literature in general,
discrete-time process algebra has been developed to a state of maturity that is satisfac-
tory from a theoretical point of view, but that still leaves much to be desired in terms
of practical applications. It seems that the design of discrete-time process algebra has
often been focused on achieving pleasing theoretical results, while ultimately the attrac-
tiveness of timed process algebra lies in its application to protocol verification.

This does not mean that timed process algebra possesses no virtue of and in itself,
but we cannot seriously claim that it is a discipline with applications in protocol veri-
fication, when most of the work that is being done is of a purely mathematical nature.
If timed process algebra is to remain an active area of research in the 21st century, we
must now focus our attention on gearing it towards practical applicability. Or, if we in-
sist on developing more theory, we should let ourselves be guided by the demands that
are made by the application of timed process algebra to real-life verifications.

Therefore, as directions for future research, we suggest the following:

• The development of efficient, professional tool support for the manipulation of
timed process-algebraic specifications. We think of a system along the lines of the
PSF system (MAUW [136], MAUW AND VELTINK [138], and VELTINK [189]), augmented
with timed process algebra, and an order of a magnitude more complete, both in
terms of capabilities and of easy of use. However, given the fact that the construc-
tion of PSF required several person-years (MAUW [137]), it seems reasonable to esti-
mate that the construction of a mature timed variant would require several person-
decades.

• The development of methods to integrate timed process-algebraic proofs in the
framework of proof checking tools, such as Coq or PVS . In order to do this, we need
a clean, formal, machine-readable specification language for timed process algebra.
A promising candidate for this is Timed µCRL (GROOTE [89]).

• The development of timed process algebras that do not use bisimulation seman-
tics, but a less discriminatory process equivalence, for example ready semantics or
failure semantics.
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• The development of process algebras that combine pure algebraic methods with a
non-algebraic specification formalism, for example a variant of temporal logic, like
in BAETEN, BERGSTRA, AND BOL [28]. As argued before, this would greatly enhance
our ability to formalize the properties of timed protocols.

• An ambitious effort to formalize, study, and ultimate verify, substantially larger
protocols than has been done up till now.

We would like to conclude this chapter with an observation from GROOTE [89]. He argues
that in the development of untimed process algebra, it has also been the case that theoret-
ical advancements have always occurred much earlier than practical applications. Only
when the theory behind untimed process algebra had stabilized and matured, he notices,
did people successfully develop methods and tools to analyze and verify large systems.
Furthermore, after the introduction of computer aided protocol verification (by means of
the µCRL formalism, see GROOTE AND PONSE [91] and KORVER [120]) it became possible
to handle the verification of protocols many times larger than before.

If the above observation is correct, we may look forward to the successful verification
of large time-dependent protocols in the near future.





A
Overview of Axioms

In this appendix we give a list of all axioms that occur in this thesis, and describe their
nomenclature.

A.1 Nomenclature

Traditionally (BAETEN AND WEIJLAND [38]), the axioms of process algebras had simple
names, consisting of one or two letters followed by a digit. For example, the axioms of
BPA are simply called A1 to A5, for “Axiom 1” to “Axiom 5”. For more complex process
algebras, more complex names were needed, and gradually the naming scheme has been
expanded. We give some guidelines which we have tried to follow:

• Most (but not all) axioms that were already present in BAETEN AND WEIJLAND [38]
have retained their names. Furthermore, some (but not all) new axioms that have
clear counterparts in the old axioms, have received names that are clearly related to
the names of their counterpart. For example, the untimed axiom CM4 has a discrete
relative-time counterpart DRTCM4.

• Letters before the digits of an axiom often give an indication of the operator it de-
fines. We have “B” for τ-laws (after Branching bisimulation), “CF” for Communica-
tion Function, “CM” for Communication Merge, “D” for encapsulation (after the ∂H
notation), “DCS” for Discrete Current Slice (the νrel operator), “DRT” for Discrete
Relative Time, “E” for Empty process, “ID” for Immediate Deadlock, “M” for (free)
Merge, “T” for abstraction (after the τI notation), and “USD” for Unbounded Start
Delay. Note that these letters can be combined, so for example DRTECM6 is an ax-
iom for the Empty process and the Communication Merge in Discrete Relative Time.

• Letters after the digits of an axiom indicate that the axiom is a variant of another
axiom. Here “A” stands for Alternative version, and “ID” for Immediate Deadlock
version. So, Axiom A6A is an axiom that can, in some contexts, serve as an alterna-
tive for Axiom A6, and Axiom M2ID is a version of Axiom M2 that has been adapted
for the immediate deadlock. Note the difference between axioms that have “ID” be-
fore the digits, and those that have “ID” after the digits. For example, Axiom MID3
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is an axiom for the merge and the immediate deadlock (that has no counterpart in
a setting without immediate deadlock), and M3ID is an axiom for the merge that
has been adapted for immediate deadlock (and that does have a counterpart in a
setting without immediate deadlock, namely Axiom M3).

• Some axioms occur under several different names, for example CM1, DRTCM1, and
DRTECM1. This was done to bring more structure in the definitions of which ax-
ioms are contained within a certain process algebra. If we look, for example, at the
process algebras that are listed in Section B.3 on page 265, we see that these defini-
tions would be much more fragmented if we would not give new, contiguous names
to axioms that have already been used before.

• Some axioms have incomplete names, for example Axiom DRT1, for “Discrete Rel-
ative Time Axiom 1”. This was done for lack of an alternative, i.e., these axioms do
not fit very well into the naming scheme.

• Some axioms have historically received ad-hoc names that fall outside the naming
scheme, for example Axiom DA (for Delayable Action) and Axiom TF (for Time Fac-
torization).

One final note: the axiom naming scheme has developed in an ad-hoc manner, and not
always for the better. Some authors have given up on finding meaningful names, and
simply do not give their axioms names at all. We feel that axiom names are indispensable
though, because we need to refer to axioms in a concise and unambiguous way. This does
not imply, however, that we are content with the current naming scheme.

A.2 List of Axioms

Below we give a list of all axioms that appear in this thesis.

x+ y = y + x A1

(x+ y)+ z = x+ (y + z) A2

x+ x = x A3

(x+ y)·z = x·z+ y·z A4

(x·y)·z = x·(y·z) A5

x+ δ = x A6

a+ δ = a A6A

x+ δ̇ = x A6ID

δ·x = δ A7

δ̇·x = δ̇ A7ID

x·ε = x A8

ε·x = x A9

a = bacω ATS

a | b = c if γ(a,b) = c CF
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x ‖ y = x ‖ y + y ‖ x+ x | y CM1

a | b·x = (a | b)·x CM2

a·x | b = (a | b)·x CM3

a·x | b·y = (a | b)·(x ‖ y) CM4

(x+ y) | z = x | z+ y | z CM5

x | (y + z) = x | y + x | z CM6

∂H(a) = a if a ∉ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x)+ ∂H(y) D3

∂H(x·y) = ∂H(x)·∂H(y) D4

∂H(ε) = ε D5

∂H(δ̇) = δ̇ D6

a = ε·a DA

νrel(a) = a DCS1

νrel(x+ y) = νrel(x)+ νrel(y) DCS2

νrel(x·y) = νrel(x)·y DCS3

νrel(σrel(x)) = δ DCS4

νrel(ε) = ε DCSE1

νrel(x+ y) = νrel(x)+ νrel(y) DCSE2

νrel(a·x) = a·x DCSE3

νrel(σ·x) = δ DCSE4

νrel(δ̇) = δ̇ DCSID

ε = ε+σ·ε DEP

σrel(x)+σrel(y) = σrel(x+ y) DRT1

σrel(x)·y = σrel(x·y) DRT2

δ·x = δ DRT3

a+ δ = a DRT4

x+ δ = x DRT4A

σrel(x)+ δ = σrel(x) DRT5

x·(τ·(νrel(y)+ z+ δ))+ νrel(y)) = x·(νrel(y)+ z+ δ) DRTB1

x·(τ·(νrel(y)+ z+ δ))+ z) = x·(νrel(y)+ z+ δ) DRTB2

x·(σrel(τ·(y+ δ))+ νrel(z)) = x·(σrel(y + δ))+ νrel(z)) DRTB3

x·(τ·by + z+ δcω+ bycω) = x·by + z+ δcω DRTB4

a | b = c if γ(a,b) = c DRTCF

x ‖ y = x ‖ y + y ‖ x+ x | y DRTCM1

a | b·x = (a | b)·x DRTCM2

a·x | b = (a | b)·x DRTCM3

a·x | b·y = (a | b)·(x ‖ y) DRTCM4
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σrel(x) |σrel(y) = σrel(x | y) DRTCM5

σrel(x) | νrel(y) = δ DRTCM6

σrel(x) | (νrel(y)+ δ) = δ DRTCM6ID

νrel(x) |σrel(y) = δ DRTCM7

(νrel(x)+ δ) |σrel(y) = δ DRTCM7ID

a |σrel(x) = δ DRTCM8

σrel(x) | a = δ DRTCM9

a·x |σrel(y) = δ DRTCM10

σrel(x) | a·y = δ DRTCM11

(x+ y) | z = x | z+ y | z DRTCM12

x | (y + z) = x | y + x | z DRTCM13

∂H(a) = a if a ∉ H DRTD1

∂H(a) = δ if a ∈ H DRTD2

∂H(x+ y) = ∂H(x)+ ∂H(y) DRTD3

∂H(x·y) = ∂H(x)·∂H(y) DRTD4

∂H(σrel(x)) = σrel(∂H(x)) DRTD5

∂H(δ̇) = δ̇ DRTD6

x+ δ = x DRTE1

δ·x = δ DRTE2

x·ε = x DRTE3

(x+ δ)·ε = x+ δ DRTE3ID

ε·x = x DRTE4

ε·(x+ δ) = x+ δ DRTE4ID

a+ δ = a DRTE5

σ + δ = σ DRTE6

ε+ δ = ε DRTE7

a | b = c if γ(a,b) = c DRTECF

x ‖ y = x ‖ y + y ‖ x+ x | y DRTECM1

a·x | b·y = (a | b)·(x ‖ y) DRTECM2

σ·x |σ·y = σ·(x | y) DRTECM3

σ·x | a·y = δ DRTECM4

a·x |σ·y = δ DRTECM5

x | ε = δ DRTECM6

ε | x = δ DRTECM7

(x+ y) | z = x | z+ y | z DRTECM8

x | (y + z) = x | y + x | z DRTECM9

∂H(a) = a if a ∉ H DRTED1

∂H(a) = δ if a ∈ H DRTED2
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∂H(x+ y) = ∂H(x)+ ∂H(y) DRTED3

∂H(x·y) = ∂H(x)·∂H(y) DRTED4

∂H(σ) = σ DRTED5

∂H(ε) = ε DRTED6

x ‖ y = x ‖ y + y ‖ x DRTEM1

a·x ‖ y = a·(x ‖ y) DRTEM2

(x+ y) ‖ z = x ‖ z+ y ‖ z DRTEM3

ε ‖ ε = ε DRTEM4

ε ‖ a·x = δ DRTEM5

ε ‖ σ·x = δ DRTEM6

ε ‖ (x+ y) = ε ‖ x+ ε ‖ y DRTEM7

σ·x ‖ (a·y + z) = σ·x ‖ z DRTEM8

σ·x ‖ δ = δ DRTEM9

σ·x ‖ ε = σ·x DRTEM10

σ·x ‖ σ·y = σ·(x ‖ y) DRTEM11

σ·x ‖ (σ·y + ε) = σ·(x ‖ y) DRTEM12

σ·δ̇ = δ DRTESID

x ‖ y = x ‖ y + y ‖ x DRTM1

a ‖ x = a·x DRTM2

a ‖ (x+ δ) = a·(x+ δ) DRTM2ID

a·x ‖ y = a·(x ‖ y) DRTM3

a·x ‖ (y+ δ) = a·(x ‖ (y + δ)) DRTM3ID

(x+ y) ‖ z = x ‖ z+ y ‖ z DRTM4

σrel(x) ‖ νrel(y) = δ DRTM5

σrel(x) ‖ (νrel(y)+ δ) = δ DRTM5ID

σrel(x) ‖ (νrel(y)+σrel(z)) = σrel(x ‖ z) DRTM6

σrel(x) ‖ a = δ DRTM7

σrel(x) ‖ a·y = δ DRTM8

σrel(x) ‖ (a+ y) = σrel(x) ‖ y DRTM9

σrel(x) ‖ (a·y + z) = σrel(x) ‖ z DRTM10

σrel(x) ‖ σrel(y) = σrel(x ‖ y) DRTM11

x ‖ δ̇ = δ̇ DRTMID1

δ̇ ‖ x = δ̇ DRTMID2

x | δ̇ = δ̇ DRTMID3

δ̇ | x = δ̇ DRTMID4

σrel(δ̇) = δ DRTSID

τI(a) = a if a ∉ I DRTT1

τI(a) = τ if a ∈ I DRTT2
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τI(x+ y) = τI(x)+ τI(y) DRTT3

τI(x·y) = τI(x)·τI(y) DRTT4

τI(σrel(x)) = σrel(τI(x)) DRTT5

τI(δ̇) = δ̇ DRTT6

x·(y + z) = x·y+ x·z LD

x ‖ y = x ‖ y + y ‖ x M1

a ‖ x = a·x M2

a ‖ (x+ δ) = a·(x+ δ) M2ID

a·x ‖ y = a·(x ‖ y) M3

a·x ‖ (y+ δ) = a·(x ‖ (y + δ)) M3ID

(x+ y) ‖ z = x ‖ z+ y ‖ z M4

ε ‖ ε = ε ME1

ε ‖ a·x = δ ME2

ε ‖ (x+ y) = ε ‖ x+ ε ‖ y ME3

x | ε = δ ME4

ε | x = δ ME5

x ‖ δ̇ = δ̇ MID1

δ̇ ‖ x = δ̇ MID2

x | δ̇ = δ̇ MID3

δ̇ | x = δ̇ MID4

σ·x+σ·y = σ·(x+ y) TF

bxcω= νrel(x)+σrel(bxcω) USD

bacω= a USD1

bx·ycω= bxcω·y USD2

bx+ ycω= bxcω+ bycω USD3

bσrel(x)cω= δ USD4

bδ̇cω= δ USD5

a ‖ bxcω= a·bxcω USD6

a·x ‖ bycω= a·(x ‖ bycω) USD7

bx | ycω= bxcω| bycω USD8

b∂H(x)cω= ∂H(bxcω) USD9

a | b = c if γ(a,b) = c USDCF

a | b·x = (a | b)·x USDCM2

a·x | b = (a | b)·x USDCM3

a·x | b·y = (a | b)·(x ‖ y) USDCM4

∂H(a) = a if a ∉ H USDD1

∂H(a) = δ if a ∈ H USDD2



B
Overview of Process Algebras

In this appendix we give a list of all process algebras that occur in this thesis, describe
their nomenclature, and give an overview of their signatures.

B.1 Nomenclature

In the naming of the process algebras defined in this thesis, we have used the following
guidelines:

• We use “BPA” as a base name for process algebras that do not contain merge op-
erators, “PA” for process algebras that only contain a free merge, and “ACP” for
process algebras that contain a merge that supports a form of synchronization or
communication.

• The presence of certain constants in the signature, e.g. δ, ε, δ̇, or τ, is indicated
by placing these constants in a subscript to the base name. So, for example, BPAδε
denotes a basic process algebra withδ and ε in its signature. Whenever the presence
of such a constant is self-evident, it is not included in the subscript. For example:
PAε contains a δ, but this is not indicated in the subscript, because it it already
implied by the presense of the ε and the ‖.

• The subscript “drt” signifies “discrete relative time”.

• The superscript “−” indicates the absence of delayable actions.

• The superscript “+” indicates the presence of a recursion principle to deal with de-
layable actions (note that “−” and “+” are mutually exclusive).

• The presence of a prime (e.g., in BPA′drt) indicates that the primed process algebra
is a minor variation on the unprimed process algebra.

• The postfix “−δ” indicates the absence of all deadlock constants, non-delayable
(“δ”), delayable (“δ”), or immediate (“δ̇”).

• The postfix “–ID” indicates the absence of an immediate deadlock constant (“δ̇”).
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B.2 Signatures

Below we give tables showing the signatures of the process algebras we have described
in this thesis. Table B.1 shows the process algebras that were defined in Chapter 2, Table
B.2 shows the process algebras that were defined in Chapters 3, 4, and 5, and Table B.3
shows the process algebras that were defined in Chapters 6 and 7. The signatures of the
process algebras BPA′drt, PA′drt, PA−drt–ID′, ACP−drt–ID′, ACP′drt, and ACP′′drt are not given, as
they are identical to the signatures of their unprimed counterparts.

+ · a δ ε δ̇ ‖ ‖ | ∂H
BPA • • •
BPAδ • • • •
BPAε • • • •
BPAδε • • • • •
BPAδ̇ • • • • •
PA • • • • •
PAδ • • • • • •
PAε • • • • • • •
PAδ̇ • • • • • • •
ACP • • • • • • • •
ACPε • • • • • • • • •
ACPδ̇ • • • • • • • • •

Table B.1: Signatures of untimed process algebras.

+ · a δ a δ δ̇ σ ν b cω ‖ ‖ | ∂H
BPA−drt–δ • • • •
BPA−drt–ID • • • • • •
BPA−drt • • • • • • •
BPAdrt • • • • • • • • • •
PA−drt–ID • • • • • • • •
PAdrt • • • • • • • • • • • •
ACP−drt–ID • • • • • • • • • •
ACPdrt • • • • • • • • • • • • • •

Table B.2: Signatures of concrete discrete-time process algebras.
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+
·

a
δ

ε τ
a
δ

ε
τ
δ̇

σ σ ν b cω ‖
‖

|
∂H

τI

BPA−drt,ε–ID • • • • •
BPAdrt,ε–ID • • • • • • •
PA−drt,ε–ID • • • • • •
PAdrt,ε–ID • • • • • • • •
ACP−drt,ε–ID • • • • • • •
ACPdrt,ε–ID • • • • • • • • •
ACPdrt,τ • • • • • • • • • • •

Table B.3: Signatures of abstract discrete-time process algebras.

B.3 Axioms

In this section we list all process algebras that occur in this thesis, together with a list of
axioms they contain.

Untimed Process Algebras

These process algebras were defined in Chapter 2:

• BPA = A1–A5

• BPAδ = A1–A7

• BPAε = A1–A5 + A8–A9

• BPAδε = A1–A9

• BPAδ̇ = A1–A5 + A6A + A7 + A6ID–A7ID

• PA = A1–A5 + M1–M4

• PAδ = A1–A7 + M1–M4

• PAε = A1–A9 + M1 + M3–M4 + ME1–ME3

• PAδ̇ = A1–A5 + A6A + A7 + A6ID–A7ID + M1 + M2ID–M3ID + M4 + MID1–MID2

• ACP = A1–A7 + M2–M4 + CM1–CM6 + CF

• ACPε = A1–A9 + M3–M4 + ME1–ME5 + CM1 + CM4-CM6 + CF + D1–D5

• ACPδ̇ = A1–A5 + A6A + A7 + A6ID–A7ID + M2ID–M3ID + M4 + CM1–CM6 + CF +
MID1–MID4 + D1–D4 + D6
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Discrete-Time Concrete Basic Process Algebras

These process algebras were defined in Chapters 3 and 4:

• BPA−drt–δ = A1–A5 + DRT1–DRT2

• BPA−drt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4

• BPA−drt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID

• BPAdrt = A1–A5 + A6ID–A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD

• BPA′drt = A1–A5 + A6ID–A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD + USD1–USD5

Discrete-Time Concrete Concurrent Process Algebras

These process algebras were defined in Chapter 5:

• PA−drt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM1–DRTM6

• PA−drt–ID′ = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM1–DRTM4 +
DRTM7–DRTM11

• ACP−drt–ID = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM2–DRTM6 +
DRTCM1–DRTCM7 + DRTCM12–DRTCM13 + DRTCF + DRTD1–DRTD5

• ACP−drt–ID′ = A1–A5 + DRT1–DRT5 + DCS1–DCS4 + DRTM2–DRTM4 +
DRTM7–DRTM11 + DRTCM1–DRTCM5 + DRTCM8–DRTCM13 + DRTCF +
DRTD1–DRTD5

• PAdrt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD + DRTM1 + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTMID1–DRTMID2

• PA′drt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD + DRTM1 + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTMID1–DRTMID2 + USD1–USD7

• ACPdrt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTCM1–DRTCM5 + DRTCM6ID–DRTCM7ID + DRTCM12–DRTCM13 + DRTCF +
DRTD1–DRTD6 + DRTMID1–DRTMID4

• ACP′drt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTCM1–DRTCM5 + DRTCM6ID–DRTCM7ID + DRTCM12–DRTCM13 + DRTCF +
DRTD1–DRTD6 + DRTMID1–DRTMID4 + USD1–USD7 + USDCF +
USDCM2–USDCM4 + USDD1–USDD2
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• ACP′′drt = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTCM1–DRTCM5 + DRTCM6ID–DRTCM7ID + DRTCM12–DRTCM13 + DRTCF +
DRTD1–DRTD6 + DRTMID1–DRTMID4 + USD1–USD9

Discrete-Time Process Algebras with Empty Process

These process algebras were defined in Chapter 6:

• BPA−drt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4

• PA−drt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DRTEM1–DRTEM12

• ACP−drt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DRTEM2–DRTEM12 +
DRTECM1–DRTECM9 + DRTECF + DRTED1–DRTED6

• BPAdrt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DEP + DA

• PAdrt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DEP + DA +
DRTEM1–DRTEM12

• ACPdrt,ε–ID = A1–A5 + DRTE1–DRTE4 + TF + DCSE1–DCSE4 + DEP + DA +
DRTEM2–DRTEM12 + DRTECM1–DRTECM9 + DRTECF + DRTED1–DRTED6

Discrete-Time Process Algebras with Abstraction

This process algebra was defined in Chapter 7:

• ACPdrt,τ = A1–A5 + A6ID + A7ID + DRT1–DRT5 + DRTSID + DCS1–DCS4 + DCSID +
ATS + USD + DRTM2ID–DRTM3ID + DRTM4 + DRTM5ID + DRTM6 +
DRTCM1–DRTCM5 + DRTCM6ID–DRTCM7ID + DRTCM12–DRTCM13 + DRTCF +
DRTD1–DRTD6 + DRTMID1–DRTMID4 + DRTB1–DRTB4 + DRTT1–DRTT6





C
Overview of Theorems

In this appendix we give an overview of the most important definitions and theorems
that appear in this thesis.

C.1 Elimination, Soundness, and Completeness

In Table C.1 on the next page we list the labels of the definitions of the axioms and se-
mantics of the process algebras given in this thesis, and the labels of the corresponding
theorems regarding elimination, soundness, and completeness. If a label is enclosed in
parentheses, e.g., “(2.6.1.5)”, this means that the corresponding property has either not
been completely proven or is not even true. In that case, the label either refers to an
incomplete proof, or to a remark that gives further explanation.
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Axioms Semantics Elimination Soundness Completeness

Untimed Process Algebras

BPA 2.3.1.6 2.3.1.11 (2.6.1.5) (2.6.1.7) (2.6.1.9)

BPAδ 2.3.2.2 2.3.2.6 (2.6.1.5) (2.6.1.7) (2.6.1.9)

BPAε 2.3.3.2 2.3.3.4 (2.6.1.5) (2.6.1.7) (2.6.1.9)

BPAδε 2.3.4.2 2.3.4.4 (2.6.1.5) (2.6.1.7) (2.6.1.9)

BPAδ̇ 2.3.5.2 2.3.5.3 (2.6.1.5) (2.6.1.7) (2.6.1.9)

PA 2.4.1.2 2.4.1.5 (2.6.1.5) (2.6.1.7) (2.6.1.9)

PAδ 2.4.2.2 2.4.2.3 (2.6.1.5) (2.6.1.7) (2.6.1.9)

PAε 2.4.3.2 2.4.3.3 (2.6.1.5) (2.6.1.7) (2.6.1.9)

PAδ̇ 2.4.4.2 2.4.4.4 (2.6.1.5) (2.6.1.7) (2.6.1.9)

ACP 2.5.1.3 2.5.1.6 (2.6.1.5) (2.6.1.7) (2.6.1.9)

ACPε 2.5.2.2 2.5.2.3 (2.6.1.5) (2.6.1.7) (2.6.1.9)

ACPδ̇ 2.5.3.2 2.5.3.3 (2.6.1.5) (2.6.1.7) (2.6.1.9)

Discrete-Time Concrete Process Algebras

BPA−drt–δ 3.2.1.5 3.2.1.7 4.3.1.2 4.3.1.4 4.3.1.8

BPA−drt–ID 3.2.2.2 3.2.2.4 4.3.2.1 4.3.2.3 4.3.2.6

BPA−drt 3.2.3.2 3.2.3.4 4.3.3.1 4.3.3.3 4.3.3.6

BPA+drt 3.2.4.5 3.2.4.9 4.3.4.1 4.3.4.5 4.3.4.9

BPA′drt 4.3.5.1 4.3.5.2 4.3.5.3 4.3.5.4 4.3.5.5

PA−drt–ID 5.2.1.2 5.2.1.3 5.2.1.8 5.2.1.10 5.2.1.14

PA−drt–ID′ 5.2.2.2 5.2.2.3 5.2.2.8 5.2.2.17 5.2.2.19

PA+drt 5.3.1.2 5.3.1.3 5.3.1.9 5.3.1.11 5.3.1.14

PA′drt 5.3.2.1 5.3.2.2 5.3.2.3 5.3.2.4 5.3.2.5

ACP−drt–ID 5.2.3.2 5.2.3.3 5.2.3.8 5.2.3.10 5.2.3.13

ACP−drt–ID′ 5.2.4.2 5.2.4.3 5.2.4.8 5.2.4.12 5.2.4.14

ACP+drt 5.3.3.2 5.3.3.3 5.3.3.12 5.3.3.14 5.3.3.17

ACP′drt 5.3.4.1 5.3.4.2 5.3.4.3 5.3.4.4 5.3.4.5

ACP′′drt 5.3.5.1 5.3.5.3 5.3.5.5 5.3.5.7 5.3.5.8

Discrete-Time Abstract Process Algebras

BPA−drt,ε–ID 6.3.1.3 6.3.1.4 (6.3.1.16) (6.3.1.17) 6.3.1.19

BPA+drt,ε–ID 6.4.1.3 6.4.1.7 (6.4.1.12) (6.4.1.13) (6.4.1.14)

PA−drt,ε–ID 6.3.2.2 6.3.2.7 (6.3.2.11) (6.3.2.12) (6.3.2.13)

PA+drt,ε–ID 6.4.2.2 6.4.2.3 (6.4.2.7) (6.4.2.8) (6.4.2.9)

ACP−drt,ε–ID 6.3.3.2 6.3.3.3 (6.3.3.7) (6.3.3.8) (6.3.3.9)

ACP+drt,ε–ID 6.4.3.2 6.4.3.3 (6.4.3.7) (6.4.3.8) (6.4.3.9)

ACPdrt,τ 7.3.2.2 7.3.2.4 (7.3.2.10) (7.3.2.10) (7.3.2.10)

Table C.1: Overview of definitions and theorems.



D
Notational Issues

In this appendix we define the general purpose symbols we have used, and give a histor-
ical overview of process algebraic notations that have been used in other publications.
For an overview of all symbols, see the Symbol Index on page 303.

D.1 Mathematical Symbols

Definition D.1.1.1 (Numbers)
We use the symbol N to denote the natural numbers: N = {0,1,2, . . .}, and N+ to de-
note the positive natural numbers: N+ = {1,2, . . .}. We use the symbol R to denote
the real numbers, and the symbol R≥0 to denote the non-negative real numbers: R≥0 =
{x ∈ R|x ≥ 0}.
Definition D.1.1.2 (Set Theory)
We use the symbol ∈ to denote set membership, the symbol ⊆ to denote the subset re-
lation, and the symbol × to denote a Cartesian product. A (repeated) Cartesian product
of a set with itself is denoted by a superscript n ∈ N, for example: R3 = R×R×R.

Definition D.1.1.3 (Iff)
We use the word “iff” to denote “if and only if”.

Definition D.1.1.4 (Syntactical Equivalence)
Given two process terms x and y, we denote their syntactical equivalence by x ≡ y.

Definition D.1.1.5 (Equivalence by Definition)
Given a meta-expression x and a process term y, we write x Ö y to denote that x is by
definition equal to y.

Definition D.1.1.6 (Composition of Relations)
For two binary relations R and R′ on a domain D, we denote their composition by R ◦R′:

R ◦ R′ = {(x, z) ∈ D×D∣∣∃y∈D : (x, y) ∈ R and (y, z) ∈ R′
}
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Definition D.1.1.7 (Reflexive Closure)
For a binary relation R on a domain D, we denote its reflexive closure by RR:

RR = R∪ {(x, y) ∈ D×D|x ≡ y}

Definition D.1.1.8 (Symmetric Closure)
For a binary relation R on a domain D, we denote its symmetric closure by RS:

RS = R∪ {(y, x) ∈ D×D|(x, y) ∈ R}

Definition D.1.1.9 (Transitive Closure)
For a binary relation R on a domain D, we denote its transitive closure by RT, where RT

is the smallest relation R′ such that R′ = R′ ◦ R′ and R ⊆ R′.
Definition D.1.1.10 (Halmos)
We use the Halmos, denoted �, to indicate the end of a proof.

Definition D.1.1.11 (Generic Operator)
We use the symbol ⊗ to denote a generic operator, i.e., ⊗ is a variable that ranges over
the set of all operators applicable in a certain context.

Definition D.1.1.12 (Term Rewriting)
We use the symbol → to denote the rewrite relation in the rewriting rules of a term-
rewriting system, the symbol < to denote a well-founded ordering, and the symbol �lpo

to denote a lexicographical path ordering. Furthermore, we use the notation ⊗? to indi-
cate a “starred” operator, and ⊗n to indicate a subscripted operator, both in the context
of a lexicographical path ordering proof.

D.2 Alternative Process Algebraic Notations

When we compare the notations we have used in this thesis with the process-algebraic
publications from the bibliography, the following differences are important:

• We find the notation “BPAdt” for “BPA−drt–δ”, “BPAδdt” for “BPA−drt–ID”, and “PAδdt”
for “PA−drt–ID” [37].

• We find the notation “ACPdt” for “ACP−drt–ID” [37, 191],

• We find the notations “σd” and “σrel(1)” for “σrel” [37, 191].

• We find the notation “cts(a)” (“current time slice”) for the undelayable action “a”,
and “ats(a)” (“any time slice”) for the delayable action “a” [21, 24].

• We find the notation “a[1]” for the undelayable action “a” [16], “a[1]” (with the
square brackets in a fuzzy outlinish font) and “a” (idem dito for the underline) for
the undelayable action “a” [17], and “a” for the delayable action “a” [16, 17].
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• It has been suggested to refer to the delayable deadlock constant “δ” as livelock,
and to the immediate deadlock constant “δ̇” as the immediate time stop, full time
stop, or catastrophic deadlock [12, 24].

• The unbounded start delay operator “b cω” derives from NICOLLIN AND SIFAKIS [154],
and is therefore also known as one of the Nicollin-Sifakis operators.

• The naming scheme for axioms (A1, A2, etc.) has become quite problematic. Nam-
ing is generally not applied consistently within ACP articles published, let alone
across them. We have no illusions this thesis is any different, although, and be-
cause, we sort of tried to adhere to the latest fashions (see Appendix A).





Summary

Process Algebra

Process algebra is a means of specifying, verifying, and in general, talking about computer
algorithms and protocols in a clearly defined, formal manner. Compared with other for-
malisms developed for this purpose, process algebra’s strong point is the fact that it is
based on algebra. In this way, manipulations with processes become algebraic manipu-
lations, allowing room for high-level abstractions to be made, potentially avoiding com-
plexity blow-up.

The whole of methods and formalisms collectively known as process algebra can be
subdivided into separate parts of which every single one, again, is called a process alge-
bra.

At the heart of every process algebra lies a set of axioms. Every axiom consists of an
equality between two process terms (that may contain free variables). Behind every axiom
there is an intuitive motivation: an insight that explains why these two process terms
should be considered equal. Together these axioms lead to an algebra: a mathematical
structure that allows for the manipulation of terms.

Given the set of axioms of a certain process algebra, it is possible to construct a model:
a mathematical “world” that obeys the equalities given by the axioms. Such a model is
called a semantics for that process algebra. Typically, several clearly distinct models can
be given for any given process algebra. However, there is a tendency always to use the
same kind of model, called a bisimulation model.

In Chapter 2 we give an introduction into process algebra. We start by introducing a
very simple process algebra, called BPA, and gradually add more features like deadlock,
the empty process, the immediate deadlock, the free merge operator, and the merge op-
erator. The chapter ends with a short discussion of the properties of process algebras.

Discrete Time

Originally, process algebra lacked the ability of quantitatively reasoning about time: al-
though we can express the sequence in which actions take place, we cannot make explicit
the moment in time at which they do.

One can reason that abstracting from timing aspects is justifiable, because often tim-
ing aspects are irrelevant in the verification of systems. However, sometimes the correct-
ness of a protocol hinges on delicate timing aspects, or the timing aspects themselves of
a protocol are the object of study. In such cases quantitative analysis of timing aspects
cannot be avoided, and untimed process algebra is therefore of little help. We can try to
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artificially encode timing aspects using untimed process algebra, but that is stretching
untimed process algebra to its limits; clearly it was never built for these purposes.

One way of introducing time is to cut up time into a countably infinite number of
time-slices. Between these time-slices, a clock tick (also called time-step), takes place that
is explicitly indicated. This leads to so-called discrete-time process algebra: the passing
of time is modeled as being discrete, consisting of the passage of a number of distinct
time-slices.

In Chapter 3 we give an introduction into discrete-time process algebra with relative
timing and introduce some process algebras that are discrete-time extensions of BPA.

Soundness and Completeness

Given a certain process algebra, we distinguish the axioms, that define an algebraic equiv-
alence relation, and the semantics, that define a model of those axioms. If it is the case
that all statements that logically follow from the axioms are indeed fulfilled in the model,
we say that the process algebra has the soundness property. Conversely, if it is the case
that all statements that are fulfilled in the model follow logically from the axioms, we say
that the process algebra has the completeness property. Put in other words: soundness
means that the axioms always tell the truth about the model, and completeness means
that the axioms can tell everything about the model.

If a process algebra has both the soundness and the completeness property, the ax-
ioms and the model are in perfect harmony: statements that follow from the axioms,
hold in the model, and statements that do not follow from the axioms, do also not hold
in the model. So, loosely speaking, the axioms and the model are equivalent.

In Chapter 4 we prove these two properties, and some others, for the process algebras
that are defined in Chapter 3.

Axioms for Concurrency

A key aspect of process algebra (and of any other formal verification method) is the use
of concurrent processes: processes that are simultaneously active, executing in parallel,
possibly communicating with each other, or influencing each other’s behavior.

In process algebra, concurrency is expressed using so-called merge operators. As it
turns out, the merge operators we introduced in Chapter 2 can be extended to discrete
time in several distinct ways. In Chapter 5 we describe several process algebras with es-
sentially different axiomatizations for these merge operators. We discuss the strong and
the weak points of each axiomatization, and prove soundness and completeness proper-
ties for all concurrent process algebras we define.

Adding the Empty Process

In process algebra we have a special process called the empty process. This process is
characterized by the fact that is cannot execute any action, but always has the option
to terminate successfully. In other words: it is the process that does nothing, success-
fully. When we introduce the empty process, as defined in Chapter 2, in the context of
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discrete-time process algebra, we find that its behavior is almost completely predeter-
mined, due to the fact that we have some simple properties that we want to hold for all
process algebras.

In Chapter 6 we look at an axiomatization for the empty process in discrete-time pro-
cess algebra. We prove that a number of desirable properties hold for this axiomatiza-
tion, and discuss the behavior of the empty process in discrete-time. Unfortunately, it
turns out that the behavior of the empty process with respect to time steps is sometimes
very counterintuitive.

Fischer’s Protocol

In Chapter 7 we look at a protocol called Fischer’s Protocol for Mutual Exclusion. This is
a quite simple protocol whose correctness is nevertheless heavily dependent on subtle
timing aspects. Therefore, it is very interesting to see how well suited discrete-time pro-
cess algebra is to describe and verify this protocol. The degree to which this succeeds
can be viewed as a measure of the maturity of discrete-time process algebra with respect
to the verification of non-trivial protocols.

We specify the protocol using discrete-time process algebra, and then use process
algebraic manipulations to bring this specification into a simplified format. After that,
we need model-dependent reasoning to complete our verification. We conclude that
discrete-time process algebra is indeed suitable to verify non-trivial protocols, but that
there is still much room for improvement. The fact that the verification is partly model-
dependent is disappointing, to say the least.

Related Work

In Chapter 8 we give an overview of other algebraic process formalisms that incorporate
time. In this overview, we look at the approaches taken in a large number of publica-
tions from the literature. The formalisms that are closely related to our formalism, or
that have interesting connections with it, are treated in some detail, but most are only
briefly sketched. We explicitly do not try to provide a unifying framework to classify all
formalisms encountered, and we only compare them to our own work, not to each other.





Samenvatting

Procesalgebra

Procesalgebra is een methode voor het specificeren, verfiëren, en in het algemeen, praten
over computeralgoritmes en protocollen op een duidelijk gedefiniëerde, formele manier.
Vergeleken met andere formalismes die voor dit doel ontwikkeld zijn, is het sterke punt
van procesalgebra dat het gebaseerd is op algebra. Hierdoor worden manipulaties met
processen algebräısche manipulaties, waardoor de mogelijkheid bestaat om op hoog ni-
veau abstracties te maken, waarmee potentiëel complexiteitstoenames vermeden kunnen
worden.

Het geheel van methodes en formalismes die gezamenlijk bekend staan als procesal-
gebra kan onderverdeeld worden in afzonderlijke delen die ieder, opnieuw, een proces-
algebra genoemd worden.

De kern van iedere procesalgebra bestaat uit een verzameling axioma’s. Ieder axioma
bestaat uit een gelijkheid tussen twee procestermen (die vrije variabelen mogen bevat-
ten). Achter ieder axioma schuilt een intüıtieve rechtvaardiging: een inzicht dat verklaart
waarom deze twee procestermen als gelijk beschouwd dienen te worden. Gezamenlijk
leiden deze axioma’s tot een algebra: een wiskundige structuur waarmee termen gema-
nipuleerd kunnen worden.

Gegeven de verzameling axioma’s van een zekere procesalgebra, is het mogelijk om
een model te construeren: een wiskundige “wereld” die de gelijkheden eerbiedigt die ge-
geven worden door de axioma’s. Zo’n model wordt een semantiek voor die procesalgebra
genoemd. Over het algemeen kunnen meerdere, duidelijk verschillende, modellen gege-
ven worden voor een willekeurige gegeven procesalgebra. Echter, er bestaat de neiging
om altijd hetzelfde soort model te gebruiken, dat een bisimulatiemodel genoemd wordt.

In Hoofdstuk 2 geven we een inleiding in de procesalgebra. We beginnen met het in-
voeren van een heel eenvoudige procesalgebra, BPA genaamd, en voegen dan geleidelijk
meer mogelijkheden toe, zoals vastzitten1, het lege proces2, het onmiddellijk vastzitten3,
de vrije verwevingsoperator4, en de verwevingsoperator5. Het hoofdstuk eindigt met een
korte bespreking van de eigenschappen van procesalgebra’s.

1Ned. vastzitten = Eng. deadlock
2Ned. lege proces = Eng. empty process
3Ned. onmiddellijk vastzitten = Eng. immediate deadlock
4Ned. vrije verwevingsoperator = Eng. free merge operator
5Ned. verwevingsoperator = Eng. merge operator
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Discrete Tijd

Oorspronkelijk ontbrak in de procesalgebra de mogelijkheid om kwantitatief over tijd
te redeneren: alhoewel we de volgorde kunnen uitdrukken waarin acties plaatsvinden,
kunnen we het moment waarop ze dat doen niet expliciet maken.

Men zou kunnen redeneren dat het gerechtvaardigd is om van tijdsaspecten te abstra-
heren, omdat tijdsaspecten vaak irrelevant zijn bij het verifiëren van systemen. Echter,
soms hangt de correctheid van een protocol af van delicate tijdsaspecten, of zijn de tijds-
aspecten zélf van een protocol het onderzoeksobject. In zulke gevallen kan de kwanti-
tatieve analyse van tijdsaspecten niet vermeden worden, en hebben we weinig aan pro-
cesalgebra zonder tijd. We kunnen proberen om tijdsaspecten kunstmatig te coderen in
procesalgebra zonder tijd, maar dat is dan wel een noodgreep; het is duidelijk dat pro-
cesalgebra zonder tijd hier niet voor gemaakt is.

Eén manier om tijd in te voeren is om de tijd onder te verdelen in een aftelbaar on-
eindig aantal tijdsintervallen6. Tussen deze tijdsintervallen vindt een kloktik7 (ook wel
tijdstap8 genoemd) plaats, die expliciet wordt aangegeven. Dit leidt tot zogeheten dis-
crete tijd procesalgebra9: het verstrijken van tijd wordt gemodelleerd alsof het discreet
gebeurt, alsof het bestaat uit het verstrijken van een aantal verschillende tijdsintervallen.

In Hoofdstuk 3 geven we een inleiding in discrete tijd procesalgebra met relatieve
tijd10, en voeren we enkele procesalgebra’s in die discrete tijd uitbreidingen zijn van BPA.

Gezondheid en Volledigheid

Gegeven een zekere procesalgebra, onderscheiden we de axioma’s, die een algebräısche
equivalentierelatie definiëren, en de semantiek, die een model van deze axioma’s defini-
eert. Wanneer het het geval is dat alle uitspraken die logisch volgen uit de axioma’s in-
derdaad vervuld zijn in het model, dan zeggen we dat de procesalgebra de gezondheids-
eigenschap11 bezit. Omgekeerd, wanneer alle uitspraken die in het model vervuld zijn
logisch volgen uit de axioma’s, dan zeggen we dat de procesalgebra de volledigheidsei-
genschap12 bezit. Met andere woorden: gezondheid betekent dat de axioma’s altijd de
waarheid vertellen over het model, en volledigheid betekent dat de axioma’s alles kun-
nen vertellen over het model.

Wanneer een procesalgebra zowel de gezondheids- als de volledigheidseigenschap be-
zit, zijn de axioma’s en het model in perfecte harmonie: uitspraken die volgen uit de axi-
oma’s gelden in het model, en uitspraken die niet volgen uit de axioma’s, gelden ook niet
in het model. Dus, losjes gezegd, zijn de axioma’s en het model equivalent.

In Hoofdstuk 4 bewijzen we deze twee eigenschappen, en een aantal andere, voor de
procesalgebra’s die gedefinieerd worden in Hoofdstuk 3.

6Ned. tijdsintervallen = Eng. time-slices
7Ned. kloktik = Eng. clock tick
8Ned. tijdstap = Eng. time-step
9Ned. discrete tijd procesalgebra = Eng. discrete-time process algebra

10Ned. relatieve tijd = Eng. relative timing
11Ned. gezondheidseigenschap = Eng. soundness property
12Ned. volledigheidseigenschap = Eng. completeness property
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Axioma’s voor Coöperatie

Een sleutelaspect van de procesalgebra (en van iedere andere formele verificatiemethode)
is het gebruik van coöperatieve processen13: processen die tegelijktijd actief zijn, parallel
worden uitgevoerd, en eventueel met elkaar communiceren, of elkaars gedrag bëınvloe-
den.

In de procesalgebra wordt coöperatie14 uitgedrukt door middel van zogeheten verwe-
vingsoperatoren15. Naar het blijkt, kunnen de verwevingsoperatoren die we in Hoofd-
stuk 2 introduceerden op diverse verschillende manieren uitgebreid worden naar dis-
crete tijd. In Hoofdstuk 5 beschrijven we diverse procesalgebra’s met essentieel verschil-
lende axiomatiseringen voor deze verwevingsoperatoren. We bespreken de de sterke en
de zwakke punten van iedere axiomatisering, en bewijzen gezondheids- en volledigheids-
eigenschappen voor alle coöperatieve procesalgebra’s die we definiëren.

Toevoegen van het Lege Proces

In de procesalgebra hebben we een speciaal proces dat het lege proces16 wordt genoemd.
Dit proces wordt gekarakteriseerd door het feit dat het geen enkele actie kan uitvoeren,
maar wel altijd de mogelijkheid heeft om succesvol te eindigen17. Met andere woorden:
het is het proces dat niets doet, op een succesvolle manier. Wanneer we het lege proces,
zoals het gedefinieerd is in Hoofdstuk 2, invoeren in de context van discrete tijd proces-
algebra, ontdekken we dat het gedrag hiervan al bijna volledig vastligt, op grond van het
feit dat er enkele simpele eigenschappen bestaan waarvan we willen dat ze gelden voor
alle procesalgebra’s.

In Hoofdstuk 6 bekijken we een axiomatisering van het lege proces in discrete tijd
procesalgebra. We bewijzen dat een aantal wenselijke eigenschappen gelden voor deze
axiomatisering, en bespreken het gedrag van het lege process in discrete tijd. Helaas
blijkt dat het gedrag van het lege process met betrekking tot tijdstappen soms erg te-
genintüıtief is.

Fischer’s Protocol

In Hoofdstuk 7 bekijken we een protocol dat Fischer’s Protocol voor Wederzijdse Uitslui-
ting18 heet. Dit is een tamelijk eenvoudig protocol, waarvan de correctheid desalniet-
temin ergl afhankelijk is van subtiele tijdsaspecten. Derhalve is het erg interessant om
te zien hoe geschikt discrete tijd procesalgebra is om dit protocol te beschrijven en te
verifiëren. De mate waarin dit lukt kan gezien worden als maatgevend voor de volwas-
senheid van discrete tijd procesalgebra met betrekking tot het verifiëren van niet-triviale
protocollen.

13Ned. coöperatieve processen = Eng. concurrent processes
14Ned. coöperatie = Eng. concurrency
15Ned. verwevingsoperatoren = Eng. merge operators
16Ned. lege proces = Eng. empty process
17Ned. succesvol te eindigen = Eng. to terminate successfully
18Ned. Fischer’s Protocol voor Wederzijdse Uitsluiting = Eng. Fischer’s Protocol for Mutual Exclusion
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We specificeren het protocol met behulp van discrete tijd procesalgebra, en gebruiken
dan proces-algebräısche manipulaties om deze specificatie in een vereenvoudigde vorm
te brengen. Daarna hebben we een model-afhankelijke redenering nodig om onze verifi-
catie te voltooien. We concluderen dat discrete tijd procesalgebra inderdaad geschikt is
om niet-triviale protocollen te verifiëren, maar dat er nog steeds veel ruimte is voor ver-
beteringen. Het feit dat de verificatie gedeeltelijk model-afhankelijk is, is op zijn zachtst
gezegd teleurstellend.

Gerelateerd Werk

In Hoofdstuk 8 geven we een overzicht van andere algebräısche procesformalismes die
tijd bevatten. In dit overzicht bekijken we de manier van aanpak in een groot aantal pu-
blicaties uit de literatuur. De formalismes die nauw verwant zijn met ons formalisme,
of die interessante verbanden hiermee hebben, worden in enig detail behandeld, maar
de meeste worden slechts kort geschetst. We proberen expliciet niet om een unificerend
raamwerk te geven om alle formalismes die we tegen komen te classificeren, en we ver-
gelijken ze alleen met ons eigen werk, niet met elkaar.
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Léonard, L. . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Liang, C. . . . . . . . . . . . . . . . . . . . . see Chen, L.
Lowe, G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Lucidi, F. . . . . . . . . . . . . . . . . . . . . . . . 239, 247
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