
A Process Algebra for Hybrid Systems

Jan Joris Vereijken

Department of Computing Science, Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

http://www.win.tue.nl/win/cs/fm/janjoris/

janjoris@acm.org

May 10, 1995

1 Introduction

The work that is presented here was initiated by question of a colleague from the mechanical
engineering department. He was analysing several industrial manufacturing processes (a tire
production line, a cookie baking line, etc.). These processes were modeled in a procedural
kind of programming language (called “χ” [AvdMR94]) extended with hybrid features such as
continuous variables defined by differential equations. Having specified the process by such
a program, analysis then proceeded by means of simulation.

Typically, they would design a production line, and then test it by building it on a small
scale to see whether it worked. So a problem would first be found on the actual production
line (“valve 4C gets clogged with coagulated cookie mix”). They would try to recreate that
problematic situation in their simulation tool. Then an ad-hoc solution would be found in the
simulator (“if we heat the cookie mix a bit more it will not coagulate”), and finally the physical
production line would be modified to reflect the “improvement”. This cycle was repeated over
and over again, until confidence in the production line design had grown enough to justify
substantial investments in a large scale production line.

This method (of course?) proved unsatisfactory for systems larger than some critical size:
the “debugging cycle” for a production line needed to be repeated ad infinitum, with each
“improvement” prompting more problems than it solved.

So although they were very precise and formal in specifying their processes, these specifi-
cations were then not used in any kind of formal analysis. This seemed very wasteful; so the
idea arose to find a translation from the language χ to an (ACP-style) process algebra [BW90].
In that way the tedious simulation driven analysis could be replaced by, or at least augmented
with, a hopefully less tedious formal analysis by process algebraic means.

With the purpose described above in mind, we created an ACP-style process algebra named
ACPhs (“ACP for hybrid systems”) that incorporates hybrid features. As our final goal is easy
translation from the language χ to ACPhs, we focused on the ease of specifying in an intuitive
way, and power to specify in a way close to χ. Sometimes, this approach forced us to make
compromises on the mathematical elegance of ACPhs, and sometimes it resulted in some ax-
ioms and proofs being longer and messier than would have been necessary had we focused
on theoretical beauty only. On the whole however, we believe we have created an process
algebra that is both easy enough to specify in, and not too complicated to reason with.

2 Methodology

In this section we will delve a bit deeper in the technical details of ACPhs. Historically speak-
ing, ACPhs is very much a combination of two previously existing process algebras, namely

1



ACPρ√ I [BB95] and ACPps [BB94].
ACPρ√ I is a process algebra that provides real-time actions (for example “a(7)”, meaning:

perform action a at time 7), allowing specification in either absolute time, relative time, or
both. Furthermore, it allows so called “urgent actions”, which are actions that occur one after
another without any time passing in between (for example “a(7) · b(7)”, meaning: perform
action a at time 7, and then perform action b, also at time 7). Finally, it provides “integration”,
which denotes a sum over a continuum of alternatives (for example

∫
v∈[1,2] a(v), meaning:

perform action a somewhere in the time interval [1,2]).
ACPps is a process algebra that provides “signals”, where a signal describes a the visible

part of the current state (for example “(x = 3) � a”, meaning: in the state, x = 3 holds until
the execution of a). Furthermore, it provides conditions (for example (x = 3) :→ b, meaning:
execute b only if x = 3).

When combining these two process algebras, one has to extend the signals and conditions
with a capability to refer to time, and all the time operators need to be extended to the pres-
ence of signals and conditions. In this way, one can denote processes like:

(P(t) = 3+ t) �
∫
v∈[2,5]

(P(t) = 7) :→ a(v)

meaning: the pressure (“P(t)”) in the system equals 3 plus the current time (“t”), now perform
action a somewhere in the interval [2,5], at a point where P(t) equals 7. As this condition
is only true at time point t = 4 the above expression simplifies to:

(P(t) = 3+ t) � a(4)

In our full article we provide axioms for ACPhs that algebraically define which expressions
can be rewritten into each other. The purpose of this is to allow one to specify the expected
behavior of a process (“the line produces cookies”) and the actual implementation of a process
(“the cookie production line works as follows...”) both in ACPhs. If one then can show, by
algebraic means, that both specifications denote the same process, one has proven that the
given implementation satisfies the intended behavior.

Furthermore, we give a Plotkin-style structured operational semantics for all operators of
ACPhs, and define a notion of (strong) bisimulation.

We also give some theorems (for example an expansion theorem) that we have found con-
venient when tackling problems of some size. The full article concludes by applying the de-
scribed techniques to a few problems of varying size.

3 Small example

To give an global impression of how such a analysis proceeds, we show a small example. The
system we chose is a simple, almost trivial, heater and thermostat system that controls the
temperature in a certain room.

We have a heater, which when turned on heats the room by 1 ◦C per hour. When it is off,
the room cools down by 1 ◦C per hour (through warmth leakage to the outside). There is a
thermostat that turns the heater off if the temperature reaches 22 ◦C and turns the heater
back on when the temperature reaches 18 ◦C. The system is started with a room temperature
of 0 ◦C and the heater on.

We will analyze this system using both absolute time (syntactically recognizable by the
round parentheses) and relative time (recognizable by the square brackets).

3.1 Specification (absolute time)

We first specify our heater-thermostat system (HT) using absolute time, i.e. all time stamps
refer to the absolute time, the time that has elapsed since the system was started. This leads
to the specification of Table 1 on the following page, which we will now explain step by step.

2



Heater = Hon(0)

Hon(u) =
∫∞
v=u
roff(v) · off1(v) ·Hoff(v)

Hoff(u) =
∫∞
v=u
ron(v) · on1(v) ·Hon(v)

Thermostat = T cold(0)

T cold(u) =
∫∞
v=u
(T(t) = 22) :→ soff(v) · Twarm(v)

Twarm(u) =
∫∞
v=u
(T(t) = 18) :→ son(v) · T cold(v)

S = S′(0)

S′(u) =
∫∞
v=u

off2(v) ·
(

dT
dt
= −1

)
� S′′(v)

S′′(u) =
∫∞
v=u

on2(v) ·
(

dT
dt
= 1

)
� S′(v)

H = {roff, soff, ron, roff,on1,on2,off1,off2}
C = {roff | soff = coff, ron | son = con,off1 | off2 = off,on1 | on2 = on}

HT =
(
T(0) = 0∧ dT

dt
= 1

)
� ∂H(Heater ‖ Thermostat ‖ S)

Table 1: Heater and Thermostat, absolute time version.

As can be seen, HT consists of three components, running in parallel: the component
“Heater”, which models the heater, the component “Thermostat” which models the thermo-
stat, and the component “S”, which models the “characteristics of the heater and the room”
(namely the facts that with the heater on, the temperature rises by 1 ◦C per hour, and with
the heater off, it falls by 1 ◦C per hour).

The component “Heater” works as follows. The initial state of the heater is “on” at time 0
(“Heater = Hon(0)”). When the heater is in the state “on” at time u (“Hon(u)”), it first tries to
execute the action roff between time 0 and ∞ (implemented by the integral from 0 to ∞). As
this action roff synchronizes with soff, it can only be done when the “Thermostat” component
is willing to do soff. Intuitively: the heater can only execute roff when the thermostat measures
the room temperature to be 22 ◦C. When the heater eventually executes this synchronizing
action roff at time v, it knows that the temperature is 22 ◦C, and stop heating at the same
moment v (“off1(v)”, note that this is an urgent action). The heater then continues in the
state “off”, at time current time v (“Hoff(v)”). This subcomponent Hoff works in a similar
way as Hon, with the roles of “off” and “on” interchanged.

Then the component “Thermostat”. It has two main states: “T cold” and “Twarm”. In the
state “T cold”, the thermostat is measuring the temperature until it becomes 22◦C (“(T(t) =
22) :→”). When that happens, the thermostat (immediately) performs the action soff, which
synchronizes with the roff action of the heater, as described above. After that, the thermostat
is in the state “Twarm”, which is similar to “T cold”, albeit that it now waits for the temperature
to drop to 18◦C.

This leaves us with component “S”. As said, this component models the “characteristics
of the heater and the room”, namely the facts that with the heater on, the temperature rises
by 1 ◦C per hour, and with the heater off, it falls by 1 ◦C per hour. It does this by trying to

3



execute “off2” and “on2” actions, which synchronize with the “off1” and “on1” actions of the
heater, as described above. As a result the “S” component knows exactly when the heater is
being turned on and off. When the heater turns off, S′ emits the signal “dT

dt = −1” into the
system, signifying that the temperature is now dropping by 1◦C per hour. Mutatis mutandis,
S′′ emits the signal “dT

dt = 1” to signify that the temperature is rising when the heater turns
on.

The complete system now consists of the components “Heater”, “Thermostat”, and “S”
running in parallel:

HT =
(
T(0) = 0∧ dT

dt
= 1

)
� ∂H(Heater ‖ Thermostat ‖ S)

As can be seen, the system starts in an initial state where the temperature is 0◦C (“T(0) = 0”),
rising by 1◦C per hour (“dT

dt = 1”).

3.2 Analysis (absolute time)

We will now analyze the specification given in Table 1 by linearizing it. By means of an expan-
sion theorem (not given in this abstract, see the full paper) we determine for every state we
reach the enabled actions. As it turns out, in every state there is exactly one enabled action, so
we can algebraically rewrite our specification (by the expansion theorem, which follows from
the axioms) into an equivalent one that just contains sequential composition (this is much
stronger than “merely” linear). The calculation is given below:

HT =
(
T(0) = 0∧ dT

dt
= 1

)
� ∂H(Heater ‖ Thermostat ‖ S)

=
(
T(0) = 0∧ dT

dt
= 1

)
� ∂H(Hon(0) ‖ T cold(0) ‖ S′(0))

=
(
T(0) = 0∧ dT

dt
= 1

)
� coff(22) · (T(22) = 22) �

∂H(off1(22) ·Hoff(22) ‖ Twarm(22) ‖ S′(22))

=
(
T(0) = 0∧ dT

dt
= 1

)
� coff(22) · (T(22) = 22) � off(22) ·

(T(22) = 22) � ∂H
(
Hoff(22) ‖ Twarm(22) ‖

(
dT
dt
= −1

)
� S′′(22)

)
=
(
T(0) = 0∧ dT

dt
= 1

)
� coff(22) · (T(22) = 22) � off(22) ·(

T(22) = 22∧ dT
dt
= −1

)
�

∂H
(
Hoff(22) · Twarm(22) ‖

(
dT
dt
= −1

)
� S′′(22)

)
=
(
T(0) = 0∧ dT

dt
= 1

)
� coff(22) · (T(22) = 22) � off(22) ·HTwarm(22)

HTwarm(u) =
(
T(u) = 22∧ dT

dt
= −1

)
� ∂H

(
Hoff(u) ‖ Twarm(u) ‖

(
dT
dt
= −1

)
� S′′(u)

)
=
(
T(u) = 22∧ dT

dt
= −1

)
� con(u + 4) · (T(u + 4) = 18) �

∂H
(

on1(u + 4) ·Hon(u + 4) ‖ T cold(u + 4) ‖
(

dT
dt
= −1

)
� S′′(u + 4)

)
=
(
T(u) = 22∧ dT

dt
= −1

)
� con(u + 4) · (T(u + 4) = 18) �

on(u + 4) · (T(u + 4) = 18) �

∂H
(
Hon(u + 4) ‖ T cold(u + 4) ‖

(
dT
dt
= 1

)
� S′(u + 4)

)

4



=
(
T(u) = 22∧ dT

dt
= −1

)
� con(u + 4) · (T(u + 4) = 18) �

on(u + 4) ·
(
T(u + 4) = 18∧ dT

dt
= 1

)
�

∂H
(
Hon(u + 4) ‖ T cold(u + 4) ‖

(
dT
dt
= 1

)
� S′(u + 4)

)
=
(
T(u) = 22∧ dT

dt
= −1

)
� con(u + 4) · (T(u + 4) = 18) �

on(u + 4) ·HTcold(u + 4)

HTcold(u) =
(
T(u) = 18∧ dT

dt
= 1

)
� ∂H

(
Hon(u) ‖ T cold(u) ‖

(
dT
dt
= 1

)
� S′′(u)

)
=
(
T(u) = 18∧ dT

dt
= 1

)
� coff(u + 4) · (T(u + 4) = 22) �

∂H
(

off1(u + 4) ·Hoff(u + 4) ‖ Twarm(u + 4) ‖
(

dT
dt
= 1

)
� S′(u + 4)

)
=
(
T(u) = 18∧ dT

dt
= 1

)
� coff(u + 4) · (T(u + 4) = 22) �

off(u + 4) · (T(u + 4) = 22) �

∂H
(
Hoff(u + 4) ‖ Twarm(u + 4) ‖

(
dT
dt
= −1

)
� S′′(u + 4)

)
=
(
T(u) = 18∧ dT

dt
= 1

)
� coff(u + 4) · (T(u + 4) = 22) �

off(u + 4) ·
(
T(u + 4) = 22∧ dT

dt
= −1

)
�

∂H
(
Hoff(u + 4) ‖ Twarm(u + 4) ‖

(
dT
dt
= −1

)
� S′′(u + 4)

)
=
(
T(u) = 18∧ dT

dt
= 1

)
� coff(u + 4) · (T(u + 4) = 22) �

off(u + 4) ·HTwarm(u + 4)

Throwing away the intermediate steps, this brings us to the following system of three equa-
tions:

HT =
(
T(0) = 0∧ dT

dt
= 1

)
� coff(22) · (T(22) = 22) � off(22) ·HTwarm(22)

HTwarm(u) =
(
T(u) = 22∧ dT

dt
= −1

)
� con(u + 4) · (T(u + 4) = 18) �

on(u + 4) ·HTcold(u + 4)

HTcold(u) =
(
T(u) = 18∧ dT

dt
= 1

)
� coff(u + 4) · (T(u + 4) = 22) �

off(u + 4) ·HTwarm(u + 4)

Abstracting from the synchronization actions we get the system HT′:

HT′ =
(
T(0) = 0∧ dT

dt
= 1

)
� off(22) ·HT′warm(22)

HT′warm(u) =
(
T(u) = 22∧ dT

dt
= −1

)
� on(u + 4) ·HT′cold(u + 4)

HT′cold(u) =
(
T(u) = 18∧ dT

dt
= 1

)
� off(u + 4) ·HT′warm(u + 4)

So HT starts in a state where the temperature is 0◦C, rising by 1◦C per hour. After 22 hours
(when it is 22◦C), the heater turns off, after which the temperature starts to fall. Four hours

5



later, (when it is 18◦C), the heater turns on, the temperature starts to rise, and another four
hours later the temperature is 22◦C again. This cycle repeats ad infinitum.

This completes the absolute time version of our small example. Note that we have not
given any correctness criterion. One such criterion could for example be “eventually the tem-
perature stays within the interval 18 ≤ T(t) ≤ 22”.

This is not necessarily a bad thing; we are more focused on transforming large, concurrent,
specifications in equivalent small, linear ones to get an insight in the functioning of a hybrid
system, than we are interested in verifying a specific property. Nevertheless, it would be nice
to be able to verify formal properties. More on this in the conclusions of this abstract, and
the full paper.

3.3 Specification (relative time)

We will now analyze the same heater and thermostat again, this time using relative time (note
the square brackets).

When inspecting the above analysis in absolute time, one notices that it is needlessly clut-
tered with variables (“u” and “v”) that only serve to express the concept of “now”. It would
be far easier to avoid this dragging along of variables by using relative time.

This leads to the specification of Table 2. This specification intuitively works just like its
absolute time counterpart, and is much easier to read.

Heater = Hon

Hon =
∫∞
v=0
roff[v] · off1[0] ·Hoff

Hoff =
∫∞
v=0
ron[v] · on1[0] ·Hon

Thermostat = T cold

T cold =
∫∞
v=0
[T(t) = 22] :→ soff[v] · Twarm

Twarm =
∫∞
v=0
[T(t) = 18] :→ son[v] · T cold

S = S′

S′ =
∫∞
v=0

off2[v] ·
[

dT
dt
= −1

]
� S′′

S′′ =
∫∞
v=0

on2[v] ·
[

dT
dt
= 1

]
� S′

H = {roff, soff, ron, roff,on1,on2,off1,off2}
C = {roff | soff = coff, ron | son = con,off1 | off2 = off,on1 | on2 = on}

HT =
[
T(0) = 0∧ dT

dt
= 1

]
� ∂H(Heater ‖ Thermostat ‖ S)

Table 2: Heater and Thermostat, relative time version.

6



3.4 Analysis (relative time)

Again we linearize. The calculation is given below. Note that it is significantly cleaner and
shorter than in the absolute time case.

HT =
[
T(0) = 0∧ dT

dt
= 1

]
� ∂H(Heater ‖ Thermostat ‖ S)

=
[
T(0) = 0∧ dT

dt
= 1

]
� ∂H(Hon ‖ T cold ‖ S′)

=
[
T(0) = 0∧ dT

dt
= 1

]
� coff[22] · [T(0) = 22] � ∂H(off1[0] ·Hoff · Twarm ‖ S′)

=
[
T(0) = 0∧ dT

dt
= 1

]
� coff[22] · [T(0) = 22] � off[0] ·

[T(0) = 22] � ∂H
(
Hoff · Twarm ‖

[
dT
dt
= −1

]
� S′′

)
=
[
T(0) = 0∧ dT

dt
= 1

]
� coff[22] · [T(0) = 22] � off[0] ·[

T(0) = 22∧ dT
dt
= −1

]
� ∂H

(
Hoff · Twarm ‖

[
dT
dt
= −1

]
� S′′

)
=
[
T(0) = 0∧ dT

dt
= 1

]
� coff[22] · [T(0) = 22] � off[0] ·HTwarm

HTwarm =
[
T(0) = 22∧ dT

dt
= −1

]
� ∂H

(
Hoff ‖ Twarm ‖

[
dT
dt
= −1

]
� S′′

)
=
[
T(0) = 22∧ dT

dt
= −1

]
� con[4] · [T(0) = 18] �

∂H
(

on1[0] ·Hon ‖ T cold ‖
[

dT
dt
= −1

]
� S′′

)
=
[
T(0) = 22∧ dT

dt
= −1

]
� con[4] · [T(0) = 18] � on[0] ·

[T(0) = 18] � ∂H
(
Hon ‖ T cold ‖

[
dT
dt
= 1

]
� S′

)
=
[
T(0) = 22∧ dT

dt
= −1

]
� con[4] · [T(0) = 18] � on[0] ·[

T(0) = 18∧ dT
dt
= 1

]
� ∂H

(
Hon ‖ T cold ‖

[
dT
dt
= 1

]
� S′

)
=
[
T(0) = 22∧ dT

dt
= −1

]
� con[4] · [T(0) = 18] � on[0] ·HTcold

HTcold =
[
T(0) = 18∧ dT

dt
= 1

]
� ∂H

(
Hon ‖ T cold ‖

[
dT
dt
= 1

]
� S′′

)
=
[
T(0) = 18∧ dT

dt
= 1

]
� coff[4] · [T(0) = 22] �

∂H
(

off1[0] ·Hoff ‖ Twarm ‖
[

dT
dt
= 1

]
� S′

)
=
[
T(0) = 18∧ dT

dt
= 1

]
� coff[4] · [T(0) = 22] � off[0] ·

[T(0) = 22] � ∂H
(
Hoff ‖ Twarm ‖

[
dT
dt
= −1

]
� S′′

)
=
[
T(0) = 18∧ dT

dt
= 1

]
� coff[4] · [T(0) = 22] � off[0] ·[

T(0) = 22∧ dT
dt
= −1

]
� ∂H

(
Hoff ‖ Twarm ‖

[
dT
dt
= −1

]
� S′′

)

7



=
[
T(0) = 18∧ dT

dt
= 1

]
� coff[4] · [T(0) = 22] � off[0] ·HTwarm

Throwing away the intermediate steps, this brings us to the following system of three equa-
tions:

HT =
[
T(0) = 0∧ dT

dt
= 1

]
� coff[22] · [T(0) = 22] � off[0] ·HTwarm

HTwarm =
[
T(0) = 22∧ dT

dt
= −1

]
� con[4] · [T(0) = 18] � on[0] ·HTcold

HTcold =
[
T(0) = 18∧ dT

dt
= 1

]
� coff[4] · [T(0) = 22] � off[0] ·HTwarm

Abstracting from the synchronization actions we get the system HT′:

HT′ =
[
T(0) = 0∧ dT

dt
= 1

]
� off[22] ·HT′warm

HT′warm =
[
T(0) = 22∧ dT

dt
= −1

]
� on[4] ·HT′cold

HT′cold =
[
T(0) = 18∧ dT

dt
= 1

]
� off[4] ·HT′warm

From these equations the behavior of the heater and thermostat system can be even easier
understood than in the absolute time case.

So, one could ask, why bother with absolute time at all? As we will argue in the full article,
specifications and calculations are indeed more naturally expressed using relative time con-
structs. Paradoxically, however, axiomizing relative time constructs is very painful, whereas
it is quite easy for absolute time.

Therefore, the approach we have taken is to have all axioms in absolute time, then de-
fine relative time constructs in terms of absolute time constructs1. The equalities needed to
rewrite systems then become theorems, that can be proven from expanding the definitions
of the relative time constructs, and proving the resulting absolute time theorem using the
axioms.

4 Conclusions

We have found a way to successfully apply (ACP-style) algebraic techniques to hybrid systems.
Because of ACP’s modular nature, this opens up the whole spectrum of ACP techniques (past,
present, and future). On several points this will save us the trouble of reinventing the wheel.

As we put emphasis on practical applicability rather than theoretical beauty, the theory
is quite a bit larger than most algebraic theories. But we strongly feel that this disadvantage
is more than made up for by the advantage of being able to specify close to the way the me-
chanical engineering language χ does.

Although we do not provide a formal translation from χ to ACPhs, it is our experience that
ACPhs provides enough expressibility to easily express all χ specifications we have encoun-
tered so far.

Where we do have some difficulties is with the notion of correctness. (Strong) bisimula-
tion is probably too much to demand between a high level specification and a very low level
implementation of a production line. It would be nice the have a notion of refinement or ab-
straction in the setting of ACPhs, but there has not been done much research on this as of
yet.

An other alternative for a notion of correctness might be by specifying the desired behav-
ior by means of a temporal logic formula. This formula could then be checked against the
process graph of an ACPhs implementation.

1The basic idea behind this is not ours; it appears in several places in the literature, e.g. [BB95].

8



For future research we plan to look into the two above mentioned alternative notions of
correctness. It is our hope that while doing so we will be able to tackle ever larger and larger
examples, finally arriving at the point where we can provide a serious alternative to the sim-
ulation driven design method described above.

Honesty dictates us to state we still quite far from formally analysing the 1000-odd line χ
programs that can quite satisfactorily be simulated. To reach that point, it will probably be
necessary to integrate our approach with computer aided process algebra tools, for example
the PSF toolkit currently under development at Eindhoven University of Technology and the
University of Amsterdam. It is our firm belief that a solid theoretical understanding of hybrid
systems in an algebraic framework, combined with sophisticated computer tools to perform
the tedious algebraic manipulations sometimes necessary, will yield powerful techniques for
assuring hybrid systems correct.

5 Acknowledgments

We like to thank Norbert Arends, Jos Baeten, Roland Bol, Jozef Hooman, Sjouke Mauw, and
Hans Mulder for their various suggestions and comments.

Bibliography

[AvdMR94] N.W.A. Arends, J.M. van de Mortel, and J.E. Rooda. Specification language for con-
tinuous systems. In Proceedings of the IASTED International Conference on Ap-
plied Modeling and Simulation, 1994.

[BB94] J.C.M. Baeten and J.A. Bergstra. Process algebra with propositional signals. Tech-
nical Report CSR 94/49, Eindhoven University of Technology, Computing Science
Department, 1994.

[BB95] J.C.M. Baeten and J.A. Bergstra. Real time process algebra with infinitesimals. In
[PVvV95], pages 148–187, 1995.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

[PVvV95] A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors. Algebra of Communicat-
ing Processes. Workshops in Computing. Springer-Verlag, 1995. Proceedings of
ACP94, the First Workshop on the Algebra of Communicating Processes.

9


